
Learning Divide-and-Evolve Parameter Configurations with Racing

Jacques Bibäı1,2 Pierre Sav́eant1
1Thales Research & Technology

Palaiseau, France
firstname.lastname@thalesgroup.com

Marc Schoenauer2
2Projet TAO, INRIA Saclay & LRI
Universit́e Paris Sud, Orsay, France

marc.schoenauer@inria.fr

Vincent Vidal 3
3CRIL & Université d’Artois

Lens, France
vidal@cril.univ-artois.fr

Abstract

The sub-optimalDivide-and-Evolve (DAE) planner imple-
ments the stochastic approach for domain-independent plan-
ning decomposition introduced in (Schoenauer, Savéant, and
Vidal 2006; 2007). DAE optimizes either the number of ac-
tions, or the total cost of actions, or the total makespan, by
generating ordered sequences of intermediate goals via artifi-
cial evolution. The evolutionary part of DAE is based on the
Evolving Objects(EO) library, and the embedded planner is
the non-optimal STRIPS planner YAHSP (Vidal 2004). For
a given domain, the learning phase uses a ’racing’ procedure
to choose the rates of the different variation operators used in
DAE, and processes the results obtained during this process
to specify the predicates that will be later used to describe the
intermediate goals.

Introduction
Divide-and-Evolve(DAE) is a generic hybrid approach to
solve Planning Problems(PPs), originally introduced in
(Schoenauer, Savéant, and Vidal 2006; 2007). It uses an evo-
lutionary algorithm to evolve an ordered sequence of sub-
goals; the resulting subproblems (going from one subgoal to
the next) are then submitted on to an embedded planner; if
all these PPs are solved, the concatenation of all correspond-
ing subplans is a solution of the initial PP. The makespan (or
number of actions or the total cost of actions) of this solution
defines the fitness of the sequence of subgoals used by the
evolutionary algorithm.

A general issue in Evolutionary Computation (EC), that
somewhat hinders its wide use in spite of some highly suc-
cessful applications, lies in the number of parameters the
programmer has to tune (from population size to selection
operators to rates of applications of variation operators), and
the lack of theoretical guidance to help him. Experimen-
tal statistical procedures have been proposed, that build on
standard Design of Experiments methods and use the speci-
ficities of the EC domain to reduce the amount of compu-
tations. Among those, theracing approach (Yuan and Gal-
lagher 2004) has been chosen here, and is used to learn, for
a given domain, the best rates of application of variation op-
erators.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Furthermore, another issue for DAE lies in the choice of
the atoms that are used to describe each subgoal. Search-
ing the space of complete states would result in a rapid ex-
plosion of the size of the search space. It thus seems more
practical to search only sequences of partial states, and to
limit the choice of possible atoms used within such partial
states. However, previous experiments on different domains
of temporal planning problems from the IPC benchmark se-
ries (Bibai, Schoenauer, and Savéant 2009) have demon-
strated the need for a very careful choice of such atoms. The
approach proposed here builds on the results of the racing
procedure to promote few atoms that will be later used to
construct sequences of partial goals for their evolutionary
optimization.

Next section briefly introduces theDivide-and-Evolve
planner and details the different components of the evolu-
tionary algorithm, as well as the way it interacts with the
embedded planner to compute the fitness of potential solu-
tions. After having described the learning procedure, the last
section presents and discusses preliminary results of DAE
using this learning procedure on IPC benchmarks.

The Divide-and-Evolve Planner
In order to solve a planning problemPD(I,G) (D for the
domain), the basic idea of DAE is to find a sequence of states
S1, . . . , Sn, and to use some embedded planner to solve the
series of planning problemsPD(Sk, Sk+1), for k ∈ [0, n]
(with the convention thatS0 = I and Sn+1 = G). The
generation and optimization of the sequence of states(Si)
is driven by an evolutionary algorithm, and we will now de-
scribe its main components: representation of individuals
(potential solutions), variation operators, and fitness.

Representation

An individual is a variable length list of subgoals, or partial
states of the given problem. For the current experiment, the
generation of partial states is based on the earliest time from
which atoms can become true. Suchdatescan be estimated
by a classical heuristic function (e.gh1, h2... (Haslum and
Geffner 2000)). The set of all possibly atoms can be re-
stricted to the atoms that are possibly true at a chosen date,
and a partial state is built at each date by choosing randomly
among atoms of the corresponding date. The sequence of

states is then built by preserving the chronology between
atoms.

Although these restrictions can contain a large number of
atoms, they can be reduced by choosing to keep only atoms
built with a set of allowed predicates. We expect that this
set can be learned by analyzing several optimized sequences
of states given by the algorithm on several problems of the
same domain.

Nevertheless, even when restricted to specific choices of
atoms, the random sampling can lead to inconsistent partial
states, because some sets of atoms can bemutually exclusive
(mutex in short). Whereas it could be possible to allow
mutex atoms in the partial states generated by DAE, and to
let evolution discard them, it seems more efficient to a priori
forbid them, as much as possible. In practice, it is difficult
to decide if two atoms aremutex. Nevertheless, it can be
estimated withh2 heuristic function (Haslum and Geffner
2000) in order to build mutex-free states.

Initialization and Variation Operators

The initialization phase and the variation operators of the
DAE algorithm respectively build the initial sequences of
states and randomly modify some sequences during its evo-
lutionary run.

The initialization of an individual is the following: first,
the number of states is uniformly drawn between one and
the number of estimated start dates; For every chosen date,
the number of atoms per state is chosen uniformly between
1 and the number of atoms of the corresponding restriction.
Atoms are then chosen one by one, uniformly in the allowed
set of atoms, and added to the individual if notmutex with
any other atom already there.

A 1-point crossover is used, adapted to variable-length
representation in that both crossover points are uniformly
independently chosen in both parents.

Because an individual is a variable length list of states,
and a state is a variable length list of atoms, themutation
operator can act here at two levels: at the individual level
by adding (addStation) or removing (delStation) a state;
or at the state level by changing (addAtom) or removing
(delAtom) some atoms in the given state.

Note that the initialization process and these variation
operators maintain the chronology between atoms in a se-
quence of states and the local consistency of a state, i.e. es-
timated mutual exclusion relations between atoms.

Applying Variation Operators Several parameters con-
trol the application of the variation operators. During an evo-
lutionary run, two parents are chosen according to the selec-
tion procedure (see (Schoenauer, Savéant, and Vidal 2006;
2007)). With probabilitypcross, they are recombined us-
ing the crossover operator. Each one then undergoes mu-
tation with probabilitypmut. When an individual must un-
dergo mutation, one mutation operator amongst the 4 op-
erators defined above is applied: four user-defined relative
weights(waddStation, wdelStation, waddAtom, wdelAtom) are
defined, and each operator has a probability proportional to
its weight of being applied.

Fitness
The fitness of a list of partial statesS1, . . . , Sn is com-
puted by repeatedly calling a independent ’embedded’ plan-
ner to solve the sequence of problemsPD(Sk, Sk+1) (k =
0, . . . , n). Any existing planner could be used, and this work
has chosen YAHSP (Vidal 2004), a lookahead strategy plan-
ning system for non-optimal STRIPS planning which uses
the actions in the relaxed plan to compute reachable states
in order to speed up the search process.

Here, there are two possibilities. If YAHSP succeeds in
solving allPD(Sk, Sk+1), the makespan (or the number of
actions or the total cost of actions) of the concatenation of
the different plans (possibly after some compression step,
see (Schoenauer, Savéant, and Vidal 2007) for detailed dis-
cussion) becomes the target objective of the fitness. In the
case where YAHSP fails to solve one of thePD(Sk, Sk+1),
the fitness promotes individuals which are “closer” to the
goal, trying to ensure that individuals for which most sub-
problems are solved are later favoured by selection.

However, it rapidly became obvious that we needed to
limit the exploration of the embedded planner in order to
rapidly discard subproblems that could be even more dif-
ficult than the original problems. We have constrained
YAHSP with amaximal number of nodesthat it is allowed
to use for any subproblem. First, when dealing with the ini-
tial population, a large number of nodes was allowed (e.g.
100000); then, the median of nodes that have been actu-
ally needed for YAHSP to solve the problems from the ini-
tial population is set as the limit for all subsequent calls to
YAHSP - a ’rule of thumb’ that appeared robust after some
intensive preliminary experiments.

Parameter Learning
Some of the parameters of the algorithms have been defi-
nitely fixed after the early experiments reported in previous
works (Schoenauer, Savéant, and Vidal 2006; 2007) (evolu-
tion strategy and stopping criteria). The present two-steps
learning procecedure thus only involves choosing the prob-
ability and weights of each of the variation operators being
used (the best domain-dependent search strategy), and then
choosing which predicates will be used to describe the inter-
mediate goals (the representation domain-dependent knowl-
edge.

The Best Domain-Dependent Search Strategy
The naive way of tuning the parameters of evolutionary al-
gorithms in order to solve a class of problems is to to use
e.g. a full factorial Design Of Experiment over all problems,
running a number of runs for each parameter configuration,
and using some ANOVA statistical test to extract the signif-
icantly best parameter configurations. Originally proposed
for solving the model selection problem in Machine Learn-
ing (Maron and Moore 1994), racing technique was intro-
duced in Evolutionary context (Birattari et al. 2002) in order
to decrease the computational cost of such naive approach
by rapidly focusing the search on the most performing pa-
rameter configurations. The basic idea of Racing techniques
is to identify, with a given statistical confidence level, the

poorly-performing parameter configurations after only a few
runs, and to continue running only the promising configura-
tions: after each run, all configurations are tested againstthe
best one, and the ones that are significantly worse are simply
discarded. Such cycle execution-comparison-eliminationis
repeated until there is just one parameter configuration left,
or the total number of experiments has been run.

The efficiency of such technique totally depends on the
statistical test used for the comparison. Because no assump-
tion can be made about the distribution of the results (e.g.
normality), we have chosen here to use the nonparametric
Friedman’s two-way analysis of variances by ranks, as ad-
vocated in (Birattari et al. 2002; Yuan and Gallagher 2004;
2007).

Moreover, whatever statistical test, the user must set the
number of initial runs before starting the comparison, and
the confidence level. Here, 11 runs (the lowest number for
significance of the statitical test) are run before startingthe
comparison for each problem tested during the learning and
parameter configuration, and a confidence level of 0.025
(strong constraint for the acceptation of equality hypothe-
sis between two parameter configurations) is used to select
the best set of parameters in terms of the lowest number of
actions and the lowest execution time. The racing process
was stopped after at most 50 runs.

Importantly, and in order to reduce the overall executino
time of the racing procedure, we assume some homogeneity
amongst the instances of a given domain, and only perform
racing using a small subset of all available instance, laterex-
trapolating the results to the whole domain. These instances
were selected by using YAHSP: First, YAHSP is launched
on each available instances (e.g. the ’bootstrap’ instances in
IPC09 ’learning track’ competition) with a very limited time
(e.g. 10 minutes). Two instances are then chosen, the one
with the longest execution time amongst the ones that have
been solved (unless all problems are unsolved), and the one
with the lowest memory use amongst the unsolved ones.

Finally, rather than starting with a full factorial DOE, only
twenty sets of parameter configurations were proposed to
the racing procedure, also chosen after previous early exper-
iments.

The Set of Predicates
At the end of the racing process, the set of predicates that
seem useful for the domain at hand is chosen from the reuslts
obtained by the best parameter configuration : the predicates
that appear in at least 50% of all best solutions found by
DAE on 11 first instances of the domain are later used to rep-
resent the intermediate states of all individuals. Note that we
could also have chosen predicates according to the propor-
tion (e.g. more than 20%) of their occurrence with regards
to all the atoms contained in the solutions found by DAE.

Detailed DAE Results
Divide-and-Evolvehas been implemented within the Evolv-
ing Objects framework1, an open source, template-based,

1http://eodev.sourceforge.net/

ANSI C++-STL-compliant evolutionary computation li-
brary. In order to illustrate here the solution quality of
DAE results with the optimal results found by CPT (Vi-
dal and Geffner 2006) and the best result found by LPG
(Gerevini, Saetti, and Serina 2003), we used therovers
simple time domain of the third International Planning Com-
petition (IPC), thepeg solitaire domain of the sixth
IPC sequential satisficing track, andgold-miner domain
of the sixth IPC learning track for the preliminary tests.

The fixedevolution engineis a (10+70)-ES: 10 parents
generate 70 offspring using variation operators, and the best
of those 80 individuals become the parents of the next gen-
eration. The samestopping criterion was used for all ex-
periments: after a minimum number of 10 generations, evo-
lution is stopped if no improvement of the best fitness in the
population is made during 20 generations, with a maximum
of 100 generations altogether.

After the racing, the DAE planner is run with the best pa-
rameter configuration found on each problem of all domains
in at most 15min of CPU time.

Figures 1, 2 and 3 show for all algorithms, the makespan
(or the number of actions or the total cost of actions) of
all instances of each domain, each column corresponding
to an instance (number on the X axis). For the deterministic
YAHSP and CPT (or stochastic LPG), symbols (’@’ and
’#’ respectively) indicate the makespan (resp. the number of
actions or the total cost of actions) found. For the stochas-
tic DAE, standard boxplots sketch the distribution of the 11
makespans.

Significantly, after the racing and the choice of predi-
cates (with the distribution frequency), the solutions found
by DAE are very close to the optimal solution found by CPT
(Figures 2 and 3) or to the best value found by LPG (Fig-
ure 1). Solution plans found by allowing the predicates for
which the distribution frequency is greater than 50% are on
average better than those using more than 20% of propor-
tions of predicate occurrences.

The other observation concerns the quality of the results,
the choice of predicates using the distribution frequency of-
ten reduces the variance of the solution plans found by DAE.
However, these choices can also increase the variance of the
solution plans found by DAE. Nevertheless, the racing and
predicates selection (with the distribution frequency) im-
prove more often the average of results found by DAE on
each problem.

Unfortunately, there has been cases where DAE with rac-
ing only found some optimal solutions, whereas DAE with
racing and predicates selection could not. A poor choice
of the allowed set of predicates could explain this behavior,
and this would lead us to reconsider the hyothesis of homo-
geneiry of instances accross a given domain: this is the topic
of on-going work.

Discussion and Conclusion
It is well known that parameter tuning is one of the weak-
nesses of evolutionary algorithms in general – andDivide-
and-Evolveis not an exception. In this paper, we introduced
a two steps learning approach in order to enhance DAE per-
formance on a specific domain. Preliminary results on three

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

50
10

0
15

0
20

0
25

0

Rovers simple time−IPC3

instances

m
ak

es
pa

n

@
@

@

@

@

@

@

@

@
@

@

@

@

@

@

@

@

@

@
@

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#@ YAHSP

LPG−best−value

Figure 1: Best makespan found by LPG (#), YAHSP value
(@) and DAE (standard boxplots sketch the distribution of
the 11 makespans after the racing step and the predicate se-
lection (more than 50% of frequency distribution of all solu-
tions) on therovers simple time IPC-3 domain.

#
#

#
#

#
#

#

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Gold−miner−learning track IPC6

instances

nu
m

be
r

of
 a

ct
io

ns

@
@

@

@

@
@

@
@

@
@

@

@

@

@

@

@

@
@

@
@

@

@

@

@

@

@

@

@

@

@

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

CPT−optimal
@ YAHSP

Figure 2: Optimal number of actions for CPT (#), YAHSP
value (@) and DAE (standard boxplots sketch the distribu-
tion of the 11 makespans after the racing step and the pred-
icate selection (more than 50% of frequency distribution of
all solutions)) on thegold-miner IPC-6 domain.

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

0
5

10
15

20
25

30

Peg Solitaire− sequential satisficing track IPC6

instances

to
ta

l−
co

st

@

@
@

@
@

@

@

@

@

@
@

@
@

@
@

@

@ @
@

@
@

@

@

@

@

@

@

@
@

@

#

#
#

#

#
#

#
#

#
#

#
#

@ YAHSP

CPT−optimal

Figure 3: Optimal total cost of actions for CPT (#), YAHSP
value (@) and DAE (standard boxplots sketch the distri-
bution of the 11 makespans after the racing step and the
predicate selection (more than 50% of frequency distribution
of all solutions)) on thepeg solitaire sequential
satisficing IPC-6 domain.

IPC domains showed that our approach improves on aver-
age the quality of solutions obtained by DAE, though not
uniformly over all tested domains.

In any case, there is still room for improvement in tun-
ing DAE’s parameters. First, the choice of the set of pa-
rameter configurations for the racing step is still an open is-
sue. Although we obtained good results with twenty param-
eter configurations, we might miss a parameter configura-
tion that would improve these results. An alternative to rac-
ing would be SPO (Bartz-Beielstein, Lasarczyk, and Preuss
2005), even though it only applies to numerical parameters.

Furthermore, the restriction of allowed predicates in the
second step of our learning approach is still an open prob-
lem. We now plan to combine the frequency distribution
with the occurrence proportions of predicates in order to
choose more efficiently the most relevant set of allowed
predicates of a specific domain.

References
Bartz-Beielstein, T.; Lasarczyk, C.; and Preuss, M. 2005. Se-
quential Parameter Optimization. InProc. CEC’05, 773– 780.
IEEE Press.

Bibai, J.; Schoenauer, M.; and Savéant, P. 2009. Divide-And-
Evolve Facing State-of-the-art Temporal Planners during the6

th

International Planning Competition. In Cotta, C., and Cowling, P.,
eds.,Proc. EvoCOP’09, LNCS 5482, 133–144. Springer-Verlag.

Birattari, M.; Sẗutzle, T.; Paquete, L.; and Varrentrapp, K. 2002.
A racing algorithm for configuring metaheuristics. InGECCO
’02, 11–18. Morgan Kaufmann Publishers Inc.

Gerevini, A.; Saetti, A.; and Serina, I. 2003. On Managing
Temporal Information for Handling Durative Actions in LPG. In
AI*IA 2003: Advances in Artificial Intelligence. Springer Verlag.

Haslum, P., and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. InProc. AIPS-2000, 70–82.

Maron, O., and Moore, A. W. 1994. Hoeffding Races: Accel-
erating Model Selection Search for Classification and Function
Approximation. InIn Advances in neural information processing
systems 6, 59–66. Morgan Kaufmann.

Schoenauer, M.; Savéant, P.; and Vidal, V. 2006. Divide-and-
Evolve: a New Memetic Scheme for Domain-Independent Tem-
poral Planning. In Gottlieb, J., and Raidl, G., eds.,Proc. Evo-
COP’06. Springer Verlag.

Schoenauer, M.; Savéant, P.; and Vidal, V. 2007. Divide-and-
Evolve: a Sequential Hybridization Strategy using Evolutionary
Algorithms. In Michalewicz, Z., and Siarry, P., eds.,Advances in
Metaheuristics for Hard Optimization, 179–198. Springer.

Vidal, V., and Geffner, H. 2006. Branching and Pruning: An Opti-
mal Temporal POCL Planner based on Constraint Programming.
Artificial Intelligence170(3):298–335.

Vidal, V. 2004. A Lookahead Strategy for Heuristic Search Plan-
ning. In 14

th International Conference on Automated Planning
& Scheduling - ICAPS, 150–160.

Yuan, B., and Gallagher, M. 2004. Statistical Racing Techniques
for Improved Empirical Evaluation of Evolutionary Algorithms.
In Parallel Problem Solving from Nature - PPSN VIII, LNCS
3242, 172–181. Springer Verlag.

Yuan, B., and Gallagher, M. 2007. Combining Meta-EAs and
Racing for Difficult EA Parameter Tuning Tasks. InParameter
Setting in Evolutionary Algorithms, 121–142. Springer-Verlag.

