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Abstract

Motivated by the recent hardware evolution towards
multi-core machines, we investigate parallel planning
techniques in a shared-memory environment. We con-
sider, more specifically, parallel versions of a best-first
search algorithm that run K threads, each expanding the
next best node from the open list. We show that the pro-
posed technique has a number of advantages. First, it
is (reasonably) simple: we show how the algorithm can
be obtained from a sequential version mostly by adding
parallel annotations. Second, we conduct an extensive
empirical study that shows that this approach is quite
effective. It is also dynamic in the sense that the num-
ber of nodes expanded in parallel is adapted during the
search. Overall we show that the approach is promising
for parallel domain-independent, suboptimal planning.

Introduction
The advent of multi-core computers poses challenges as well
as opportunities for compute-intensive methods such as au-
tomated planning. Planning is a prime candidate of tech-
nology that can potentially benefit from parallel hardware:
the exploration of very large search spaces can consume
enormous computational resources and is on the face of it
“embarrassingly parallel”. The challenge, however, is to re-
think the state-of-the-art algorithms so that they efficiently
exploit this parallelism. There are well-known pitfalls: a
clever strategy has to be used to split the workload among
processors, synchronization costs need to be restricted, etc.

This paper contributes to the emerging field of parallel
planning. It studies a simple approach to shared-memory
parallel planning that bears some similarities with the K-
Best-First Search (KBFS) approach proposed in (Felner,
Kraus, and Korf 2003). The basic idea of KBFS is that in-
stead of expanding at every step a single node, optimal w.r.t.
the heuristic function, the K best nodes are expanded. This
is a more robust approach, because it takes into account that
heuristic functions are rarely perfect: by introducing diver-
sification it reduces the risk of being guided for too long
towards wrong directions. This approach is also a natural
candidate for parallelism, since we have at any time K inde-
pendent node expansions to perform.
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We propose an approach in which a shared state space is
expanded in parallel by several threads concurrently. This
approach does not explicitly mimic the original, sequential
KBFS algorithm, but we explain that it essentially imple-
ments a similar behavior, while additionally exploiting the
computational power of multiple cores. The approach is, de-
liberately, relatively simple: in fact our presentation shows
how, starting from a sequential algorithm, annotations on the
code suffice to move to a full-fledged parallel version. The
advantage of such an approach is that the correctness of the
parallel algorithm naturally follows from reasoning on the
sequential one. In terms of implementation, the annotations
are very close to actual constructs used in parallel program-
ming libraries. This makes our results easy to understand
and reproduce by other interested researchers.

Starting from a basic version of the parallel algorithm,
we show how a number of improvements are smoothly in-
tegrated. First, we show that the algorithm can be made
adaptive, in that the number of threads automatically ad-
justs to the problem. Second, we show that a restart policy
brings complementary benefits. We conduct an empirical
evaluation of our algorithms against a large set of planning
problems. For the sake of generality we targeted domain-
independent (PDDL) planning problems. This is another
difference with the original KBFS work, which focussed on
domain-dependent planning. Our focus in this paper is, also,
on suboptimal planning: the approach is used to compute
a plan without consideration of optimizing a quality mea-
sure. The main conclusion of this experimental work is that
the proposed approach to parallelism, although simple, ac-
tually provides substantial performance improvements over
the sequential algorithm; this is good news w.r.t. the bad
performance of the parallel implementation of KBFS made
in (Burns et al. 2009).

Outline. First we present related work on parallel plan-
ning. We then present our basic approach, explaining in par-
ticular how we gradually move from a sequential algorithm
to a parallel one. Next comes a first empirical study used to
evaluate and improve the basic algorithm. From the conclu-
sions of this experimental study, we propose improvements
of the algorithm. A second empirical section analyzes in de-
tails the performance of the resulting optimized algorithm.
Our main findings are then summarized in the conclusion.



Prior Work on Parallel Planning
Several approaches to parallel planning have been proposed
in recent years. Parallel Retracting A* (Evett et al. 1995),
was implemented on a Connection Machine and had to deal
with very severe memory limitations. In that algorithm, a
distributed hash function is used to allocate generated states
to a unique processing unit and avoid unnecessary state du-
plications. PRA* dealt with the memory limitation through a
retraction mechanism which allowed a processor to free its
memory by dropping states. In order to confirm the trans-
fer of a state, synchronous communication channels had
to be used, which seriously slowed down the search pro-
cess. Transposition-table driven work scheduling (Romein
et al. 1999), similarly to PRA* uses a hash function to
avoid duplication. It is based on IDA* and, running on
a standard architecture, does not necessitate any retraction
mechanism and can efficiently exploit asynchronous com-
munication channels. Parallel Frontier A* with Delayed Du-
plicate Detection (Niewiadomski, Amaral, and Holte 2006)
uses a strategy based on intervals computed by sampling to
distribute the workload among several workstations, target-
ting distributed-memory systems as opposed to previous ap-
proaches. In (Kishimoto, Fukunaga, and Botea 2009), the
authors introduce Hash Distributed A* (HDA*) which com-
bines successful ideas from previous parallel algorithms.
HDA* uses a hash function which assigns each generated
state to a unique processing unit in order to avoid the du-
plication of the search efforts. This mechanism was intro-
duced in PRA*, which unfortunately combined it with syn-
chronous communication channels which caused a lot of
overhead. This problem was addressed in HDA* by the
use of non-blocking communication (as in (Romein et al.
1999)). In (Burns et al. 2009) the authors present Parallel
Best-NBlock-First (PBNF). It uses an abstraction to parti-
tion the state space. PBNF allows each thread to expand
the most promising nodes while detecting duplicate states.
Rather than sleeping if a lock cannot be acquired, a thread
can perform “speculative” expansions by continuing the ex-
pansion of its current part of the space. This technique keeps
cores busy at the expense of duplicate work. Finally, (Valen-
zano et al. 2010) adapts to planning a technique called dove-
tailing, in which several instances of a search algorithm with
different parameter settings are run in parallel. We use this
approach in this paper as a bottom-line, and show how our
approach improves over a simple dovetailing strategy.

K-Parallel best-first search
We now introduce the main features of the parallel version
of best-first search we propose. We then show a first round
of empirical results that helped us propose some further im-
provements.

Overview
At a high-level, the approach consists in sharing the state-
space between the K threads that are created. Note that K
does not need to be equal to the number of cores available,
nor does it need to stay constant. The threads continuously

expand nodes in the shared data-structure, with the main dif-
ferences w.r.t. KBFS being that the threads do not wait until
the K best nodes are expanded before picking a new one in
the open list. As soon as a thread has finished expanding a
node, it extracts the actual best node from the open list and
expands it, whatever the state in which the other threads are.
As described below, the only bottleneck that requires lock-
ing concerns concurrent access to the open and closed list.
For several reasons that will be discussed and experimen-
tally assessed, this problem remains limited.

From Sequential to Parallel
To give more details on the algorithm we show how it can
be obtained from a sequential version mostly by adding par-
allelization annotations to specific parts of a classical best-
first search algorithm. These annotations are based on the
OpenMP framework (OpenMP 1997), which is an API spec-
ification for parallel programming integrated into several C,
C++ and Fortran compilers. OpenMP provides two kinds
of tools: directives that control parallelism (thread creation,
synchronization, critical parts, etc.) and runtime library rou-
tines that permit to get or set several parameters at run time
and manually control synchronization locks.

This approach is interesting for the following reasons:
first reasoning on the correctness of the algorithm is sim-
ple —essentially it comes from the fact that the sequential
version is correct. Second, our approach only uses direc-
tives, which yields minimal changes to the code and can be
removed at compile time, making it identical to the sequen-
tial version. A classical best-first search algorithm can be
modified as follows.

Declaration of global thread-private data. By default,
all variables and data structures created in the sequential
part of the code are shared among all threads. By using
the threadprivate(variable list) directive, we
make the listed global variables private to each thread. These
variables could have been declared locally in a parallel sec-
tion of the code, and would have then been private to each
thread; but as the actual code uses some global variables,
this directive permits to keep them global but private at the
thread level. These variables essentially concern some struc-
tures used to compute the heuristics.

Initialization of global thread-private data. After the
sequential code which parses the PDDL files, instantiates
the operators, creates the data structures, and performs
some preprocessing intended to reduce the problem size (re-
moving irrelevant actions and so on), a first parallel
num threads(K) directive defines a parallel block start-
ing K threads. The global variables private to each thread
described above are then initialized. When the parallel
block ends, all threads are synchronized through an implicit
barrier in the OpenMP terminology, and the code continues
in a sequential way in the master thread. All global thread-
private variables created in the parallel block will retrieve
their value in the next parallel block, the data belonging to
the master thread being the only one accessible in the se-
quential part that follows.



Initialization of shared data. Now in the sequential part,
the open and closed lists are created. As all threads use these
lists, they are not declared in the initial threadprivate
directive. The initial state of the problem is then evaluated
by the heuristic function and put in open, using the global
variables, private to the master thread, previously initialized.

Parallelizing the main loop. A second parallel
num threads(K) directive is then encountered, where
all threads retrieve the values of the global thread-private
variables initialized earlier, surrounding the main loop of
the best-first search algorithm. This loop extracts and ex-
pands the best node from open, puts it in closed and adds
its children to open after evaluating them. This operation is
performed by all threads in a concurrent way, so each vari-
able or data structure used to expand and evaluate a node
must be private to each thread. Also, all access to open and
closed must be performed in a safe way, as we did not use
lock-free structures (actually, they are implemented by way
of red-black trees). Consequently, all operations on these
lists are enclosed in blocks preceded by the critical di-
rective, which ensures that only one thread at a time can per-
form them. This is the only bottleneck of our approach: sev-
eral threads trying to simultaneously access open and closed
must wait for the implicit lock of the critical section to
be freed.

There is one difference in the main loop with a classical
sequential implementation. This loop must not end when
open is empty, as usually made in the case where the state
space is completely explored without finding a solution. In-
deed, it may happen (particularly in the first iterations) that
a thread tries to extract a node from the empty open list,
while one or several threads are still expanding some other
nodes and will later put their children into the list. To over-
come this problem, a shared counter is used to enumerate the
threads that are actually expanding a node. When a thread
extracts a node from the open list, it increments this counter;
and just before demanding a new node, it decrements the
counter. When a thread tries to extract a node, if the counter
is equal to 0 and open is empty, the search can be terminated
and no solution reported. It must be noted that simple oper-
ations on shared counters can be performed in a thread-safe
and non-blocking way with the atomic directive.

Ending the parallel work and returning the solution.
Once a solution is found by a given thread, the main loop of
this thread is terminated (which can this time be assessed in
the loop condition). Then, several alternatives exist to prop-
erly finish the work, the problem being that no possibility
exists in OpenMP to explicitly kill a thread. One alterna-
tive is to change the value of a shared Boolean from false to
true, indicating to all threads that a solution is found and let-
ting them terminate as soon as possible, in order to reach the
implicit synchronization barrier of the parallel directive
surrounding the main loop. Another possibility is to simply
output the solution in the successful thread and exit the pro-
gram, without waiting the other threads to synchronize. In
both cases, a single directive just after the main loop, sur-
rounding a block entered only by the first successful thread
that reaches it, ensures that either the plan solution recording

operation in a data structure accessible by the master thread
(for the next sequential part) or the solution output and exit
is performed by only a single successful thread.

Analysis
Coarse-grained parallelism. A first observation is that
we focus on domain-independent planning with fairly costly
heuristic functions. We think this is the right assumption for
parallel planning: with such heuristic functions a substantial
amount of work needs to be done when expanding a node,
which guarantees a sufficiently coarse-grained approach to
parallelism. We think that our approach is not as appropri-
ate for cheap heuristic functions because in this setting the
various threads would spend a lower portion of their time ac-
tually performing computation —which means that a bigger
share of the time would be spent in concurrent access to the
search frontier. Such fine-grained approaches to parallelism
seem more prone to synchronization overhead.

Dynamic aspects of K-Parallel BFS. A second observa-
tion concerns the dynamic aspects of K-Parallel BFS. Al-
though this algorithm relies on the same basic principle than
KBFS —expanding several nodes instead of the best one
only may guide search towards a good direction by correct-
ing heuristic mistakes—, it has the fundamental difference
that the number of nodes simultaneously extracted from the
open list to be expanded is not exactly K, but less than or
equal to K. It may vary following several external parame-
ters, such as the number of cores, the time needed to expand
a node and compute the heuristic, the behavior of the oper-
ating system thread scheduler, etc. The main advantage is
that as previously seen, this approach is extremely simple to
implement on top of any best-first search algorithm without
really modifying the algorithm itself. The main drawback
is that we have no control on the number of nodes simul-
taneously expanded, and that this number depends on ex-
ternal parameters as seen above, out of control inside the
algorithm. Furthermore, the K parameter is limited to the
number of threads that the system can reasonably handle.
It could be possible to mimic the behavior of KBFS by dis-
tributing the K nodes over the cores with one thread by core,
but we preferred to stick to the simplest alternative that re-
quires minimal changes to an existing implementation.

Optimality and solution quality. A third observation is
about optimality and plan quality. Although our approach
is designed with suboptimal planning in mind, where reach-
ing a goal state is enough to return a solution, it could be
worth the effort trying it on optimal planning too with costly
heuristic functions. It is claimed in (Felner, Kraus, and Korf
2003) that KBFS should not be effective for optimal plan-
ning with admissible and monotonic heuristic functions, be-
cause “all nodes whose cost is less than the optimal solution
cost must be expanded”. But in that case, distributing the
work among several computation units could still be benefi-
cial. Finally in that work, we do not care about plan quality,
as such an algorithm could be for example embedded into
an optimization algorithm such as the evolutionary meta-
heuristic proposed in (Bibaı̈, et al. 2010). Solution optimiza-
tion could be performed directly by the planning algorithm



itself (see e.g. (Richter, Thayer, and Ruml 2010)), but we
chose once again to evaluate the simplest objective of find-
ing one solution as quickly as possible.

Empirical Study of Basic Parallelization
Experimental Setting
We implemented our approach on top of a new implemen-
tation in C of the YAHSP planner (Vidal 2004), a state-of-
the-art PDDL planner—see (Bibaı̈, et al. 2010) for a re-
cent comparison with other planners . Essentially1, YAHSP
computes lookahead states by applying as many actions as
possible from the relaxed plan computed in each state of a
forward search in a FF manner (Hoffmann and Nebel 2001),
and adds these states to the open list. The plan repair algo-
rithm introduced in YAHSP is used, in order to maximize
the number of actions used from relaxed plans. This new
implementation is simpler than the original one, as some
features (optimistic BFS with helpful actions, goal-preferred
actions) revealed to be less useful on modern benchmarks
than they used to be for old ones. In order to diversify the
lookahead strategy, stochastic tie-breaking is performed in
various choice points in the relaxed plan computation and
repair. The search algorithm is WA*, with a weight on the
heuristic equal to 3, modified with the OpenMP directives
for parallelization. This version is able to solve classical,
cost-based and temporal planning problems (with a simple
deordering algorithm to parallelize the plan).

The instances used for the experiments come from the 2nd

to the 6th International Planning Competitions, and include
a total of 2042 problems from 54 domains, which are all the
instances from these IPCs that YAHSP can handle. Many of
these instances are solved very quickly, which explains why
the difference in the number of solved problems between all
the versions we tested is not so high w.r.t. the total number
of instances. The tests were run on a Xeon 5160 processor
(4 cores, 3GHz). The time-out was set to 30 minutes of wall-
clock (WC) time. All reported timings are WC times.

We should also note that experiments with parallel pro-
gramming involve a great deal of non-determinism: running
the same algorithm twice on the same instance, with iden-
tical number of threads and parameters, may result in dif-
ferent solutions, and sometimes in very different runtimes.
The runtimes in our figures have not been averaged over
a series of run: our figures are based on one run for each
instance/configuration. However the figures are averaged-
out by the very fact that we run each algorithm over a large
number of problems. We checked, by re-running some of
the experiments, that our overall results are not affected by
the non-determinism, in the following sense: if we run a
particular algorithm/configuration over all instances several
times, the runtimes for a few specific instances may vary, but
the overall picture is not affected: we get comparable cumu-
lated numbers of instances solved, and consistent pairwise
comparisons between algorithm configurations.

1Due to lack of space, we cannot give much details about
YAHSP: the interested reader may find a more comprehensive de-
scription in (Vidal 2004).
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Figure 1: Number of instances solved for various number
of threads ranging from 1 to 64. For each WC time t on
the y axis, the corresponding value on the x axis gives the
cumulated number of instances solved in under t seconds.

Results
Impact of multi-threading. We first report in Fig. 1 the
overall number of instances solved as we increase the num-
ber of threads. A first observation is that multi-threading
effectively increases the number of solved instances: from
1777 for the 1-thread version up to 1809 for the 64-thread
one (25 more). Note, again, that in all cases the same 4-
core computer is used. In other words, when the number of
threads is greater than 4 we have more threads than cores.
Importantly, such configurations pays off, with our best per-
formance observed for the highest number of threads, 64
(experiments with over 64 threads showed a stabilization of
the performance at around this number and are not reported).
The reason why a number of threads greater than the actual
number of cores pays off is that extra diversification is ob-
tained by the multi-threading, which allows the algorithm to
solve some difficult instances. This is consistent with the
observations made with KBFS.

Correlating the benefits of multi-threading to the in-
stance hardness. An in-depth analysis of the naive ver-
sion of our algorithm shows in which cases a high-level of
multi-threading pays off, in function of the hardness of the
instance considered. The intuition is the following. Many
problems in our benchmark suite are easy, and we assume
that such would be the case in a practical deployment sce-
nario as well: for such instances the heuristic function is
well-informed and guides the search effectively towards the
goal. In this case multi-threading only causes overhead
since we lose time exploring nodes that deviate from a good
heuristic score. We expect multi-threading to pay mostly
for instances that are beyond a certain threshold of hardness,
where it can really unblock an imperfect heuristic function
and improve the scalability.

To validate this intuition experimentally we measure the
winning ratio between various pairs of parallel strategies.
The winning ratio is the percentage of times the first strat-
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Figure 3: Winning ratios between various pairs of parallel
strategies; the x axis uses a logarithmic scale to zoom on the
small runtimes.

egy is faster than the second. We measure how this ratio
evolves in function of a “problem hardness” estimate, de-
fined as the WC time (in seconds) used by the slowest of the
two compared planners: in the x axis of Fig. 2 a time of
t indicates that one of the planners took at least t seconds
to solve the problem, and the other took less than t seconds.
We therefore identify hardness, in this Figure, with “hard for
one of the approaches”, which typically means that diversi-
fying away from the heuristic function is more likely to pay.
Fig. 3 shows the same ratios but with a logarithmic time line
that better shows what happens for small runtimes.

What these data confirm is that when an instance is solved
easily by any method, multi-threading does not pay. As the
hardness increases, the winning ratio clearly favors the more
highly multi-threaded algorithms. The winning ratios of the
64-thread version versus all other versions is shown more
specifically on Fig. 4. For problems whose hardness is up
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Figure 4: Winning ratios between the 64-thread algorithm
versus lower numbers of threads.

to 200 sec., we see for instance that the 8-thread version is
winning against the 64-thread one; beyond 200 sec. however
the winning ratio clearly favors the 64-thread version. These
curves illustrate clearly that the optimal number of threads
increases smoothly: for instances that are easily solved we
should perhaps use a single-threaded version; as time goes
by we should use increasingly many threads, reaching the
highest number of threads after a certain time which, judging
from the empirical data, should be shortly after 200 sec.

This clearly suggests that some improvements of the basic
version of our algorithm are possible; in particular a number
of threads adapted dynamically should give us the scalabil-
ity of multi-threading without penalizing the execution for
easier instances. Next section explores this and other im-
provements of our baseline algorithm.

Improving K-Parallel BFS
In this section we address two questions raised by the pre-
vious experimental section. First: is it possible to adjust
dynamically the number of threads to the observed instance
hardness? In other words: how do we benefit from the scal-
ability brought by a high number of threads while avoiding
the overhead this induces for easy instances.

Second, we have explained that multi-threading is power-
ful because it diversifies the search. There are other, well-
known diversification techniques, among which restarts.
How do we compare the benefits of restarts with multi-
threading? Can the two techniques complement each other.

Dynamically Adapting the Number of Threads
The previous analysis shows that the more difficult an in-
stance is for two compared planners, the more successful the
use of many threads is; while for easier problems, the over-
head induced by too many threads does not pay off. Then
naturally comes the idea to dynamically adapt the number of
threads to the difficulty of an instance, by gradually increas-
ing the number of threads simultaneously expanding nodes
from the open list, as time goes by.



We experimented that strategy by increasing the number
of threads starting from one thread up to a maximum of
64 threads, following the number of expanded nodes. The
bounds on these numbers that decide the increase in the
number of threads has been set up by correlating the tim-
ing information of Fig. 2, 3 and 4 with the number of nodes
effectively expanded by the algorithm.

However, we did not obtain interesting results; this pol-
icy being most often, for difficult problems, worse than the
initial 64-thread strategy. We think that this can be ex-
plained by the fact that doing this way, early mistakes made
on top of the search tree cannot be corrected by the use of
more threads, as these additional threads only expand the ac-
tual best nodes, and not top-level nodes that could orientate
search towards completely different directions.

Combining Adaptive Strategy and Restarts
Restart strategies have been proven to be successful tech-
niques in combinatorial search to diversify the way a search
space is explored, by increasing the chance to obtain faster
a solution. They have been recently successfully used in
(Richter, Thayer, and Ruml 2010), which presents an any-
time approach that restarts the search from the initial state
every time a new solution is found. The authors show that
this gives better performance than trying to improve the cur-
rent best solution starting from the end of the solution path.
Restarting has the ability to escape the early mistakes per-
formed by a poorly informed heuristic function. Their tech-
nique is applied to PDDL planning and to other domains,
with good performance on hard optimization problems.

In order to combine the facts that (i) easy problems are
faster solved with few threads, (ii) difficult problems benefit
from a larger number of threads, and (iii) the use of many
threads should be made at the root of the search tree to bet-
ter diversify the search from the initial state, we propose
to restart the search from scratch each time the number of
threads is increased, by simply emptying open and closed.

This can be made by enclosing the main loop of the par-
allel best-first search algorithm described earlier, includ-
ing the parallel num threads(K) directive, into an-
other loop which executes the inner loop, and when that in-
ner loop stops due to a predefined bound limit on the num-
ber of nodes, flushes the open and closed lists, increments
K and starts again. A Boolean shared between all threads,
whose value can be changed by any thread, indicates that a
bound limit has been reached. As there is an implicit syn-
chronization point at the end of the block surrounded by the
parallel directive, all threads can escape the inner loop
before the open and closed lists are emptied.

The simple and completely ad-hoc restart policy based on
the number of expanded nodes that we used is the following:
1 thread up to 50 nodes, 4 threads up to 400 nodes, 8 threads
up to 3,000 nodes, 16 threads up to 20,000 nodes, 32 threads
up to 100,000 nodes, and then 64 threads until the end.

Empirical Study of Adaptive+Restarts
We now report on further experiments that analyze the ben-
efits of the improved strategy.
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Overall performance. We first compare the global perfor-
mance of the new algorithm with our previous parallel ver-
sions without adaptive restarts. Fig. 5 shows that the par-
allel strategy with adaptive restarts improves significantly
the cumulated number of solved problems over the origi-
nal 64-thread version. Fig. 6 shows that the winning ratio
for the new algorithm versus basic multi-threaded versions
is improved a lot and mostly avoids poor performance for
the easiest instances. Fig. 7 shows a scatter-plot comparison
of the WC time between the adaptive restarts strategy ver-
sus the basic single-thread approach, showing that we very
often obtain super linear speedups (when the running times
are improved by a factor greater than the number of cores,
see (Rao and Kumar 1988)) with the new approach.

A distinction should be made between two improvements.
First, the adaptive strategy, i.e. the fact that we start with

only one thread, and introduce more threads only gradually:
this essentially pays off for instances solved under a certain
time threshold, and explains why the curve for the improved
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version is slightly flatter for small runtimes. For instance
about 1800 instances are solved in under 200 sec. by the
method with adaptive restarts, against 1765 for the initial
64-thread version.

Second, the restarts: they contribute to solving more in-
stances. An important finding is that the source of diver-
sification introduced by restarts is indeed complementary to
the diversification already introduced by K-Parallel BFS: the
version with restarts is able to solve 25 more instances than
the version with 64 threads without adaptive restarts (1834
instances versus 1809), and 57 more than the 1-thread ver-
sion (1777 instances). This is interesting because it shows
that the two sources of diversification are not, as could have
been conjectured, redundant; instead they mix well together.

Break-down of the improvements. We now provide data
that analyze further the various aspects of our algorithms and
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Figure 9: Our best strategy with 64 threads and adaptive
restarts run on 1 core versus 4 cores (WC time).

how the gains break-down. Fig. 8 super-imposes to the plot
of solved instances the results of two extra experiments.

To estimate how our proposal compares to a truly naive
parallel strategy we implemented a “bottom-line” parallel
approach working as follows. The algorithm uses a portfolio
of four isolate planning algorithms (having different behav-
ior thanks to the stochastic tie-breaking mentioned earlier),
each using its own copy of the search space and of all data-
structures (similar to the dovetailing strategy of (Valenzano
et al. 2010)). The advantage of this extremely simple ap-
proach is that no locking or communication of any sort is
needed: each search goes ahead independently and we stop
as soon as one of them completes. Fig. 8 shows that this ap-
proach is significantly less effective than our best adaptive
strategy. The bottom-line approach is roughly as effective as
our 16-thread version without adaptive restarts. The issue is
that it is difficult to see how to improve the naive algorithm
further without fundamentally changing its properties, for
instance without introducing communications. In contrast
our “slightly less naive approach” allows us to smoothly in-
tegrate the improvements we suggested in the previous sec-
tion and which greatly increase its scalability.

To estimate the benefits of parallel hardware we ran our
best algorithm in a single-core setting (i.e. by forcing the
use of one core, the hardware remaining the same). Again
we see that the use of 4 cores allows a better scalability:
exploiting them all, we solve 41 more instances than with
the same algorithm using one core (1834 versus 1793). Fig.
9 gives a scatter-plot comparison of the execution of our best
algorithm on a single core versus 4 cores.

Core utilization. To get a full understanding of the costs
of our algorithms we also carefully measured the core uti-
lization of all versions. This measures the percentage of the
time that each core spends doing effective computation (the
rest of the time is the overhead caused by synchronization,
system calls, . . . ) for problems solved by all versions. It is
worth distinguishing, here again, between the easy instances
and those that take longer to solve. For easy instances the
utilization is lower, which is consistent to our observation
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Figure 10: Core utilization of several versions of the algo-
rithm for the 625 instances solved by all versions in less than
10 sec (left) and the 51 instances solved by all versions in
more than 10 sec (right).

that the high-level of multi-threading pays mostly when the
instance is reasonably difficult, but has overheads for easy
instances. Fig. 10 (left-hand side) reports on the utiliza-
tion measured for the 625 easiest instances with meaningful
numbers (search time greater than 0, etc.), solved by all ver-
sions in less than 10 sec. (problems on the x axis are ordered
differently for each version, by increasing utilization). For
the new algorithm, it begins much lower with a plateau at
around 25% for the 300 first problems, as core utilization is
measured w.r.t. 4 cores, even if 3 of them are unused for the
50 first expanded nodes. Fig. 10 (right-hand side) reports on
the utilization for the 51 most difficult instances, solved by
all versions in more than 10 sec. The core utilization is high,
indicating an efficient use of locking. As explained earlier,
part of it is due to our focus on reasonably costly heuris-
tic functions: once a core starts expanding a node, it has a
substantial amount of work to do, which guarantees a high
utilization.

Summary of the experiments. Compared to a basic se-
quential version, our algorithm cumulates effects from four
improvements: (1) the use of a number of threads that starts
low and increases as a higher runtime is needed to solve the
problem; (2) the use of a K-Parallel strategy as opposed to
the expansion of a single best node; (3) the use of restarts;
(4) the use of a 4-core machine as opposed to a single-core
one. Overall the experiments reported in this section show
the following:

1. The benefits of adapting the number of threads dynami-
cally are mainly in terms of solving faster some (reason-
ably) easy instances. For instance in Fig. 5 our interpreta-
tion is that this improvement helps solving more instances
under a given time threshold, say 200 sec. However the
adaptive strategy is not the explanation for the resolution
of harder instances, where a high level of multi-threading
pays off. In our view the adaptive strategy should be used
in cases where many instances, including a high percent-
age of easy ones, need to be solved sequentially and the
cumulated runtime matters: in such cases avoiding over-
head for small instances is desirable.

2. Part of the gains in our approach are due to the fact that
multi-threading simulates a KBFS approach. We have
noted that running our approach on a single core, notably,
proves to pay off to some extent.

3. An important conclusion is that restarts work well in ad-
dition to the K-Parallel strategy.

4. Last, our strategy proves to make effective use of a de-
ployment on a 4-core computer compared to single-core,
as evidenced by Fig. 8 and 9.

Conclusion
We demonstrated in this paper that a simple parallelization
of a best-first search algorithm, targeted to shared memory
multi-core computers, yields nice empirical results. This al-
gorithm is then improved by combining an adaptive strat-
egy for increasing the number of threads concurrently ex-
panding nodes with a restart policy, in order to correct early
mistakes when diversifying search with more threads. We
shown that this algorithm improves the cumulated number
of solved problems, and solves many problems faster than
the baseline approaches; especially the instances that present
some difficulty, and often with super-linear speedups. We
plan for future works to provide more accurate adaptive and
restart strategies, which actually sound a bit ad-hoc, and to
combine this approach with portfolios of different search al-
gorithms and planning heuristics.
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