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Abstract. In this paper, nogood recording is investigated for CSP within the ran-
domization and restart framework. Our goal is to avoid the same situations to oc-
cur from one run to the next one. More precisely, nogoods are recorded when the
current cutoff value is reached, i.e. before restarting the search algorithm. Such
a set of nogoods is extracted from the last branch of the current search tree and
managed using the structure of watched literals originally proposed for SAT. In-
terestingly, the number of nogoods recorded before each new run is bounded by
the length of the last branch of the search tree. As a consequence, the total number
of recorded nogoods is polynomial in the number of restarts. Experiments over a
wide range of CSP instances demonstrate the effectiveness of this approach.

1 Introduction

Nogood recording (or learning) has been suggested as a technique to enhance CSP
(Constraint Satisfaction Problem) solving in [9]. The principle is to record a nogood
whenever a conflict occurs during a backtracking search. Such nogoods can then be
exploited later to prevent the exploration of useless parts of the search tree. The first
experimental results obtained with learning were given in the early 90’s [9, 13, 27].

Contrary to CSP, the recent impressive progress in SAT (Boolean Satisfiability Prob-
lem) has been achieved using nogood recording (clause learning) under a randomiza-
tion and restart policy enhanced with a very efficient lazy data structure [24]. Indeed,
the interest of clause learning has arisen with the availability of large instances (en-
coding practical applications) which contain some structures and exhibit heavy-tailed
phenomenon. Learning in SAT is a typical successful technique obtained from the cross
fertilization between CSP and SAT: nogood recording [9] and conflict directed back-
jumping [25] have been introduced for CSP and later imported into SAT solvers [2,
21].

Recently, a generalization of nogoods, as well as an elegant learning method, have
been proposed in [18, 19] for CSP. While standard nogoods correspond to variable as-
signments, generalized nogoods also involve value refutations. These generalized no-
goods benefit from nice features. For example, they can compactly capture large sets of
standard nogoods and are proved to be more powerful than standard ones to prune the
search space.

As the set of nogoods that can be recorded might be of exponential size, one needs
to achieve some restrictions. For example, in SAT, learned nogoods are not minimal



and are limited in number using the First Unique Implication Point (First UIP) concept.
Different variants have been proposed (e.g. relevance bounded learning [2]), all of them
attempt to find the best trade-off between the overhead of learning and performance im-
provements. Consequently, the recorded nogoods can not lead to a complete elimination
of redundancy in search trees. An original alternative [29] to combine search scattering
and redundancy avoidance involves performing random jumps in the search space. It is
particularly relevant when an allotted time is given.

In this paper, nogood recording is investigated within the randomization and restart
framework. The principle of our approach is to learn nogoods from the last branch of
the search tree before a restart, discarding already explored parts of the search tree
in subsequent runs. Roughly speaking, we manage nogoods by introducing a global
constraint with a dedicated filtering algorithm which exploits watched literals [24]. The
worst-case time complexity of this propagation algorithm is O(n2γ) where n is the
number of variables and γ the number of recorded nogoods. Besides, we know that γ is
at most ndρ where d is the greatest domain size and ρ is the number of restarts already
performed.

This approach, so-called nogood recording from restarts, can be seen as the CSP
adaptation of the search signature technique [1] introduced for SAT. Indeed, this tech-
nique involves recording the explanations (as clauses) of the search path before restart-
ing, while discarding all clauses inferred (if any) during the last run. Nogood recording
from restarts presents some interesting features. First, when search is stopped before
finding a solution, one can run later the CSP solver with the guarantee of not exploring
the same portion of the search space. Secondly, it can be used as a complementary ap-
proach of the classical learning schemes which extract and record nogoods each time a
conflict occurs.

2 Technical Background

A Constraint Network (CN) P is a pair (X , C ) where X is a set of n variables and C a
set of e constraints. Each variable X ∈ X has an associated domain, denoted dom(X),
which contains the set of values allowed for X . Each constraint C ∈ C involves a
subset of variables of X , denoted vars(C), and has an associated relation, denoted
rel(C), which contains the set of tuples allowed for vars(C).

A solution to a CN is an assignment of values to all the variables such that all the
constraints are satisfied. A CN is said to be satisfiable iff it admits at least one solution.
The Constraint Satisfaction Problem (CSP) is the NP-complete task of determining
whether a given CN is satisfiable. A CSP instance is then defined by a CN, and solving
it involves either finding one (or more) solution or determining its unsatisfiability. To
solve a CSP instance, one can modify the CN by using inference or search methods
[10].

The backtracking algorithm (BT) is a central algorithm for solving CSP instances.
It performs a depth-first search in order to instantiate variables and a backtrack mecha-
nism when dead-ends occur. Many works have been devoted to improve its forward and
backward phases by introducing look-ahead and look-back schemes [10]. Today, MAC
[26] is the (look-ahead) algorithm considered as the most efficient generic approach



to solve CSP instances. It maintains a property called Arc Consistency (AC) during
search. When mentioning MAC, it is important to indicate which branching scheme is
employed. Indeed, it is possible to consider binary (2-way) branching or non binary (d-
way) branching. These two schemes are not equivalent as it has been shown that binary
branching is more powerful (to refute unsatisfiable instances) than non-binary branch-
ing [17]. With binary branching, at each step of search, a pair (X ,v) is selected where
X is an unassigned variable and v a value in dom(X), and two cases are considered:
the assignment X = v and the refutation X 6= v. The MAC algorithm (using binary
branching) can then be seen as building a binary tree. Classically, MAC always starts
by assigning variables before refuting values. Generalized Arc Consistency (GAC) (e.g.
[4]) extends AC to non binary constraints, and MGAC is the search algorithm that main-
tains GAC.

Although sophisticated look-back algorithms such as CBJ (Conflict Directed Back-
jumping) [25] and DBT (Dynamic Backtracking) [14] exist, it has been shown [3, 5,
20] that MAC combined with a good variable ordering heuristic often outperforms such
techniques.

3 Reduced nld-Nogoods

From now on, we will consider a search tree built by a backtracking search algorithm
based on the 2-way branching scheme (e.g. MAC), positive decisions being performed
first. Each branch of the search tree can then be seen as a sequence of positive and
negative decisions, defined as follows:

Definition 1. Let P = (X , C ) be a CN and (X ,v) be a pair such that X ∈ X

and v ∈ dom(X). The assignment X = v is called a positive decision whereas the
refutation X 6= v is called a negative decision. ¬(X = v) denotes X 6= v and ¬(X 6=
v) denotes X = v.

Definition 2. Let Σ = 〈δ1, . . . , δi, . . . , δm〉 be a sequence of decisions where δi is a
negative decision. The sequence 〈δ1, . . . , δi〉 is called a nld-subsequence (negative last
decision subsequence) of Σ. The set of positive and negative decisions of Σ are denoted
by pos(Σ) and neg(Σ), respectively.

Definition 3. Let P be a CN and ∆ be a set of decisions. P |∆ is the CN obtained from
P s.t., for any positive decision (X = v) ∈ ∆, dom(X) is restricted to {v}, and, for any
negative decision (X 6= v) ∈ ∆, v is removed from dom(X).

Definition 4. Let P be a CN and ∆ be a set of decisions. ∆ is a nogood of P iff P |∆
is unsatisfiable.

From any branch of the search tree, a nogood can be extracted from each negative
decision. This is stated by the following property:

Proposition 1. Let P be a CN and Σ be the sequence of decisions taken along a
branch of the search tree. For any nld-subsequence 〈δ1, . . . , δi〉 of Σ, the set ∆ =
{δ1, . . . ,¬δi} is a nogood of P (called nld-nogood)1.

1 The notation {δ1, . . . ,¬δi} corresponds to {δj ∈ Σ | j < i}∪{¬δi} reduced to {¬δ1} when
i = 1.



Proof. As positive decisions are taken first, when the negative decision δi is encountered,
the subtree corresponding to the opposite decision ¬δi has been refuted. 2

These nogoods contain both positive and negative decisions and then correspond
to the definition of generalized nogoods [12, 19]. In the following, we show that nld-
nogoods can be reduced in size by considering positive decisions only. Hence, we ben-
efit from both an improvement in space complexity and a more powerful pruning capa-
bility.

By construction, CSP nogoods do not contain two opposite decisions i.e. both x = v
and x 6= v. Propositional resolution allows to deduce the clause r = (α ∨ β) from
the clauses x ∨ α and ¬x ∨ β. Nogoods can be represented as propositional clauses
(disjunction of literals), where literals correspond to positive and negative decisions. For
example, a nogood ∆ = {X1 = v1, X2 6=, v2, X3 = v3, X4 6= v4} can be represented
by the clause c = (X1 6= v1 ∨ X2 = v2 ∨ X3 6= v3 ∨ X4 = v4). Consequently, we
can extend resolution to deal directly with CSP nogoods (e.g. [23]), called Constraint
Resolution (C-Res for short). It can be defined as follows:

Definition 5. Let P be a CN, and ∆1 = Γ ∪ {xi = vi} and ∆2 = Λ ∪ {xi 6= vi} be
two nogoods of P . We define Constraint Resolution as C-Res(∆1, ∆2) = Γ ∪ Λ.

It is immediate that C-Res(∆1, ∆2) is a nogood of P .

Proposition 2. Let P be a CN and Σ be the sequence of decisions taken along a branch
of the search tree. For any nld-subsequence Σ ′ = 〈δ1, . . . , δi〉 of Σ, the set ∆ =
pos(Σ′) ∪ {¬δi} is a nogood of P (called reduced nld-nogood).

Proof. We suppose that Σ contains k ≥ 1 negative decisions, denoted by δg1
, . . . , δgk

, in
the order that they appear in Σ. The nld-subsequence of Σ with k negative decisions is
Σ′

1 = 〈δ1, . . . , δg1
, . . . , δgk

〉. Its corresponding nld-nogood is ∆1 = {δ1, . . . , δg1
, . . . ,

δgk−1
, . . . , ¬δgk

}, δgk−1
being now the last negative decision. The nld-subsequence of

Σ with k−1 negative decisions is Σ ′

2 = 〈δ1, . . . , δg1
, . . . , δgk−1

〉. Its corresponding nld-
nogood is ∆2 = {δ1, . . . , δg1

, . . . ,¬δgk−1
}. We now apply C-Res between ∆1 and ∆2

and we obtain ∆′

1 = C-Res(∆1, ∆2) = {δ1, . . . , δg1
, . . . , δgk−2

, . . . , δgk−1−1, δgk−1+1,
. . . ,¬δgk

}. The last negative decision is now δgk−2
, which will be eliminated with the

nld-nogood containing k − 2 negative decisions. All the remaining negative decisions
are then eliminated by applying the same process. 2

One interesting aspect is that the space required to store all nogoods corresponding
to any branch of the search tree is polynomial with respect to the number of variables
and the greatest domain size.

Proposition 3. Let P be a CN and Σ be the sequence of decisions taken along a branch
of the search tree. The space complexity to record all nld-nogoods of Σ is O(n2d2) while
the space complexity to record all reduced nld-nogoods of Σ is O(n2d).

Proof. First, the number of negative decisions in any branch is O(nd). For each negative
decision, we can extract a (reduced) nld-nogood. As the size of any (resp. reduced) nld-
nogood is O(nd) (resp. O(n) since it only contains positive decisions), we obtain an
overall space complexity of O(n2d2) (resp. O(n2d)). 2



4 Nogood Recording from Restarts

In [15], it has been shown that the runtime distribution produced by a randomized search
algorithm is sometimes characterized by an extremely long tail with some infinite mo-
ment. For some instances, this heavy-tailed phenomenon can be avoided by using ran-
dom restarts, i.e. by restarting search several times while randomizing the employed
search heuristic. For constraint satisfaction, restarts have been shown productive. How-
ever, when learning is not exploited (as it is currently the case for most of the academic
and commercial solvers), the average performance of the solver is damaged (cf. Section
6).

Nogood recording has not yet been shown to be quite convincing for CSP (one no-
ticeable exception is [19]) and, further, it is a technique that leads, when uncontrolled,
to an exponential space complexity. We propose to address this issue by combining
nogood recording and restarts in the following way: reduced nld-nogoods are recorded
from the last (and current) branch of the search tree between each run. Our aim is to ben-
efit from both restarts and learning capabilities without sacrificing solver performance
and space complexity.
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δ1

¬δ6

¬δ4 δ7 ¬δ7 δ8

¬δ10δ10

δ6

δ2

δ3

δ9 ¬δ9δ5 ¬δ5
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Fig. 1. Area of nld-nogoods in a partial search tree

Figure 1 depicts the partial search tree explored when the solver is about to restart.
Positive decisions being taken first, a δi (resp. ¬δi) corresponds to a positive (resp.
negative) decision. Search has been stopped after refuting δ11 and taking the decision
¬δ11. The nld-nogoods of P are the following: ∆1 = {δ1,¬δ2,¬δ6, δ8,¬δ9, δ11},
∆2 = {δ1,¬δ2,¬δ6, δ8, δ9}, ∆3 = {δ1,¬δ2, δ6}, ∆4 = {δ1, δ2}. The first reduced
nld-nogood is obtained as follows:

∆′

1 = C-Res(C-Res(C-Res(∆1 , ∆2), ∆3), ∆4)
= C-Res(C-Res({δ1,¬δ2,¬δ6, δ8, δ11}, ∆3), ∆4)
= C-Res({δ1,¬δ2, δ8, δ11}, ∆4)
= {δ1, δ8, δ11}



Applying the same process to the other nld-nogoods, we obtain:

∆′

2 = C-Res(C-Res(∆2 , ∆3), ∆4) = {δ1, δ8, δ9}.
∆′

3 = C-Res(∆3, ∆4) = {δ1, δ6}.
∆′

4 = ∆4 = {δ1, δ2}.

In order to avoid exploring the same parts of the search space during subsequent
runs, recorded nogoods can be exploited. Indeed, it suffices to control that the decisions
of the current branch do not contain all decisions of one nogood. Moreover, the negation
of the last unperformed decision of any nogood can be inferred as described in the next
section. For example, whenever the decision δ1 is taken, we can infer ¬δ2 from nogood
∆′

4 and ¬δ6 from nogood ∆′

3.
Finally, we want to emphasize that reduced nld-nogoods extracted from the last

branch subsume all reduced nld-nogoods that could be extracted from any branch pre-
viously explored.

5 Managing Nogoods

In this section, we show how to efficiently exploit reduced nld-nogoods by using the
SAT technique of watched literals [24, 30, 11]. We present an efficient propagation al-
gorithm enforcing GAC on all learned reduced nld-nogoods that can be collectively
considered as a global constraint. It is important to note that, reduced nld-nogoods will
be stored under the form of propositional clauses only involving negative literals.

5.1 Data structures

First, we introduce three basic types that will be useful for defining our data structures.
The first one, denoted Literal, identifies any positive or negative decision (i.e. any
variable assignment or value refutation). It then corresponds to a structure including
three fields as follows:

– variable is a reference to a variable
– value is an integer that belongs to the initial domain of the variable
– positive is a Boolean that indicates if the decision is positive (true) or not (false)

The second one, denoted Element, associates a nogood with two watched literals.
It then corresponds to a structure including three fields as follows:

– nogood is an array of Literal references (whose size is at least 2)
– watch1 is an integer which gives the position of a first watched literal in nogood
– watch2 is an integer which gives the position of a second watched literal in nogood

The third one, denoted Link, allows to build linked lists of Element references.
These links are used to access nogoods recorded in the base. It corresponds to a structure
including two fields as follows:

– element is an Element reference
– next is a Link reference (whose value is nil if it is not followed by another link)



Fig. 2. Partial view of the nogood base

We can now introduce the following global structure:

– watches is an array of Link references, which gives, for each literal δ, the head of
a list containing all nogoods ∆ such that δ is watched in ∆.

We will consider that the indexing of any array t of size s ranges from 1 to s and
that size(t) denotes s. Also, remark that references must be considered as pointers
(following the Java model), and that nil is used for empty references. Initially, watches
is an array such that, for each literal δ, we have watches[δ] initialized to nil. Here, to
simplify the presentation and without any loss of generality, we consider watches as
a kind of associative array (map) which gives for each literal δ, the reference to the
first nogood (via an Element reference) currently involving δ as watched literal. In
practice, to guarantee a constant time access to this first element, we can either use a
three-dimensional array or some specific encoding of literals.

Figure 2 illustrates the data structures that we have introduced. In a partial view,
one can observe two recorded nogoods. The first one contains the two watched literals
X 6= a and Z 6= c whereas the second one contains X 6= a and W 6= d.

5.2 Recording Nogoods

Nogoods derived from the current branch of the search tree (i.e. reduced nld-nogoods)
when the current run is stopped can be recorded by calling the storeNogoods function
(see Algorithm 1). The parameter of this function is the sequence of literals labelling
the current branch. As observed in Section 3, a reduced nld-nogood can be recorded
from each negative decision occurring in this sequence. From the root to the leaf of the



Algorithm 1 storeNogoods(branch : array of Literal)
1: positiveLiterals : array of size(branch) Literal
2: nbPositiveLiterals← 0
3: for i ranging from 1 to size(branch) do
4: if branch[i].positive then
5: nbPositiveLiterals← nbPositiveLiterals + 1
6: positiveLiterals[nbPositiveLiterals]← branch[i]
7: else
8: if nbPositiveLiterals = 0 then
9: remove branch[i].value from branch[i].variable for all subsequent runs

10: else
11: nogood : array of nbPositiveLiterals + 1 Literal
12: for j ranging from 1 to nbPositiveLiterals do
13: nogood[j]← positiveLiterals[j]
14: nogood[j].positive← false
15: end for
16: nogood[nbPositiveLiterals+1]← branch[i]
17: addNogood(nogood)
18: end if
19: end if
20: end for

Algorithm 2 addNogood(nogood : array of Literal)
1: element : Element
2: element.nogood← nogood
3: element.watch1← 1
4: insertWatch(nogood[1],element)
5: element.watch2← size(nogood)
6: insertWatch(nogood[size(nogood)], element])

current branch, when a positive literal is encountered, it is recorded in an array (lines 5
and 6), and when a negative literal is encountered, we build a nogood from this literal
and all recorded positive ones (lines 11 to 16). It is important to remark that, here,
the nogood is considered as a clause (disjunction of literals), this is the reason why
we modify the phase of the literals (see line 14). If the nogood is of size 1, it can be
directly exploited by reducing the domain of the involved variable (line 9). Otherwise,
it is recorded, by calling the addNogood function, into the base (line 17).

To record a new nogood, the addNogood function (see Algorithm 2) is called. We
select as watched literals the first and last literal of the nogood. To do this, we have to
call the function insertWatch (see Algorithm 3). A new link is used to become the
first link of the list of nogoods (via elements) involving the given literal as watched
literal.

We can show that the worst-case time complexity of storeNogoods is O(λpλn)
where λp and λn are the number of positive and negatives decisions on the current
branch, respectively.



Algorithm 3 insertWatch(literal : Literal, element : Element)
1: link : Link
2: link.element← element
3: link.next← watches[literal]
4: watches[literal]← link

5.3 Exploiting Nogoods

Inferences can be performed using reduced nld-nogoods while establishing (maintain-
ing) Generalized Arc Consistency. We show it with a coarse-grained GAC algorithm
based on a variable-oriented propagation scheme [22, 8, 6]. The Algorithm 4 can be
applied to any CN (involving constraints of any arity) in order to establish GAC. At
preprocessing, propagate must be called with the set S of variables of the network
whereas during search, S only contains the variable involved in the last positive or neg-
ative decision. At any time, the principle is to have in Q all variables whose domains
have been reduced by propagation.

Algorithm 4 propagate(S : Set of variables) : Boolean
1: Q← S
2: while Q 6= ∅ do
3: pick and delete X from Q
4: if | dom(X) | = 1 then
5: let a be the unique value in dom(X)
6: if checkWatches(X 6= a) = false then return false
7: end if
8: for each C | X ∈ vars(C) do
9: for each Y ∈ V ars(C) | X 6= Y do

10: if revise(C,Y ) then
11: if dom(Y ) = ∅ then return false
12: else Q← Q ∪ {Y }
13: end while
14: return true

Initially, Q contains all variables of the given set S (line 1). Then, iteratively, each
variable X of Q is selected (line 3). If dom(X) corresponds to a singleton {v} (lines
4 to 7), we can exploit recorded nogoods by checking the consistency of the nogood
base. This is performed by the function checkWatches (described below) by iterating
all nogoods involving X 6= v as watched literal. For each such nogood, either another
literal not yet watched can be found, or an inference is performed (and the set Q is
updated).

The rest of the algorithm (lines 8 to 12) corresponds to the body of a classical
generic coarse-grained GAC algorithm. For each constraint C binding X , we perform
the revision of all arcs (C, Y ) with Y 6= X . A revision is performed by a call to the
function revise, specific to the chosen coarse-grained arc consistency algorithm, and



Algorithm 5 checkWatches(literal : Literal) : Boolean
1: previous← nil
2: current← watches[literal]
3: while current 6= nil do
4: position← canFindAnotherWatch(current.access)
5: if position 6= -1 then
6: if previous = nil then watches[literal]← watches[literal].next
7: else previous.next← current.next
8: if literal = current.element.nogood[current.element.watch1] then
9: current.element.watch1← position

10: else
11: current.element.watch2← position
12: let newWatchedLiteral be current.element.nogood[i]
13: tmp← current.next
14: current.next← watches[newWatchedLiteral]
15: watches[newWatchedLiteral]← current
16: current← tmp
17: else
18: if literal = current.element.nogood[current.element.watch1] then
19: inferredLiteral← current.element.nogood[current.element.watch2]
20: else
21: inferredLiteral← current.element.nogood[current.element.watch1]
22: let X be inferredLiteral.variable and v be inferredLiteral.value
23: if v ∈ dom(X) then
24: remove v from dom(X)
25: if dom(X) = ∅ then return false
26: else Q← Q ∪ {X}
27: end if
28: previous← current
29: current← current.next
30: end if
31: end while
32: return true

entails removing values that became inconsistent with respect to C. When the revision
of an arc (C, Y ) involves the removal of some values in dom(Y ), revise returns true
and the variable Y is added to Q. For more information about this algorithm and some
of these optimizations, see [6] The algorithm loops until a fix-point is reached.

The principle of Algorithm 5 is to iterate the list of elements (nogoods) involving
as watched literal the literal given in parameter. For each such element, denoted by
current at each turn of the main loop, we have to look for another watched literal. This
is done by calling the function canF indAnotherWatch (see Algorithm 6). If we can
find a literal which is not currently watched (see line 2) and which can be watched then
its position is returned. Otherwise, −1 is returned. When a new watched literal has been
found, we have to update (i.e. remove an element) the list watches[literal] (lines 6 and
7), update a watched literal position (lines 8 to 11) and update (i.e. add an element)
the list watches[newWatchedLiteral] (lines 13 to 15). When no other literal can be



Algorithm 6 canFindAnotherWatch(element : Element) : integer
1: for i ranging from 1 to size(element.nogood) do
2: if element.watch1 = i or element.watch2 = i then continue
3: let X be element.nogood[i].variable and v be element.nogood[i].value
4: if v /∈ dom(X) or | dom(X) |> 1 then return i
5: end for
6: return −1

watched, we can then infer that the second watched literal must be verified. Remember
that we only record reduced nld-nogoods. Hence, the inference is necessarily of the
form X 6= a. Taking into account this inference when a still belongs to dom(X), we
can remove a from dom(X), which can yield an inconsistency or an update of the set
Q.

The worst-case time complexity of checkWatches is O(nγ) where γ is the number
of reduced nld-nogoods stored in the base and n is the number of variables2. Indeed,
in the worst case, each nogood is watched by the literal given in parameter, and the
time complexity of dealing with a reduced nld-nogood in order to find another watched
literal or make an inference is O(n). Then, the worst-case time complexity of propagate
is O(er2dr + n2γ) where r is the greatest constraint arity. More precisely, the cost of
establishing GAC (using a generic approach) is O(er2dr) when an algorithm such as
GAC2001 [4] is used and the cost of exploiting nogoods to enforce GAC is O(n2γ).
Indeed, checkWatches is O(nγ) and it can be called only once per variable.

The space complexity of the structures introduced to manage reduced nld-nogoods
in a backtracking search algorithm is O(n(d + γ)). Indeed, we need to store γ nogoods
of size at most n and we need to store watched literals which is O(nd).

6 Experiments

In order to show the practical interest of the approach described in this paper, we have
conducted an extensive experimentation (on a PC Pentium IV 2.4GHz 512Mo under
Linux). We have used the state-of-the-art algorithm MAC [26] and studied the impact
of exploiting restarts (denoted by MAC+RST) and nogood recording from restarts (de-
noted by MAC+RST+NG). Concerning the restart policy, the initial number of allowed
backtracks for the first run has been set to 10 and the increasing factor to 1.5 (i.e., at
each new run, the number of allowed backtracks increases by a 1.5 factor). We used
three different variable ordering heuristics: the classical brelaz [7] and dom/ddeg [3]
as well as the adaptive dom/wdeg that has been recently shown to be the most efficient
generic heuristic [5, 20, 16, 28]. Importantly, when restarts are performed, randomiza-
tion is introduced in brelaz and dom/ddeg to break ties. For dom/wdeg, the weight
of constraints are preserved from each run to the next one, which makes randomization
useless (weights are sufficiently discriminant).

In our first experimentation, we have tested the three algorithms on the full set of
1064 instances used as benchmarks for the first competition of CSP solvers [28]. The

2 In practice, the size of reduced nld-nogoods can be far smaller than n (cf. Section 6).



time limit to solve an instance was fixed to 30 minutes. Table 1 provides an overview of
the results in terms of the number of instances unsolved within the time limit (#time-
outs) and the average cpu time in seconds (avg time) computed from instances solved
by all three methods. Figures 3 and 4 represent scatter plots displaying pairwise com-
parisons for dom/ddeg and dom/wdeg. Finally, Table 2 focuses on the most difficult
real-world instances of the Radio Link Frequency Assignment Problem (RLFAP). Per-
formance is measured in terms of the cpu time in seconds (no timeout) and the number
of visited nodes. An analysis of all these results reveals three main points.

Restarts (without learning) yields mitigated results. First, we observe an increased
average cpu time for all heuristics and fewer solved instances for classical ones. How-
ever, a close look at the different series reveals that MAC+RST combined with brelaz
(resp. dom/ddeg) solved 27 (resp. 32) less instances than MAC on the series ehi. These
instances correspond to random instances embedding a small unsatisfiable kernel. As
classical heuristics do not guide search towards this kernel, restarting search tends to
be nothing but an expense. Without these series, MAC+RST would have solved more
instances than MAC (but, still, with worse performance). Also, remark that dom/wdeg
renders MAC+RST more robust than MAC (even on the ehi series).

Nogood recording from restarts improves MAC performance. Indeed, both the num-
ber of unsolved instances and the average cpu time are reduced. This is due to the fact
that the solver never explores several times the same portion of the search space while
benefiting from restarts.

Nogood recording from restarts applied to real-world instances pays off. When
focusing to the hardest instances [28] built from the real-world RLFAP instance scen-
11, we can observe in Table 2 that using a restart policy allows to be more efficient by
almost one order of magnitude. When we further exploit nogood recording, the gain is
about 10%.

MAC
+ RST + RST + NG

dom/ddeg
#timeouts 365 378 337

avg time 125.0 159.0 109.1

brelaz
#timeouts 277 298 261

avg time 85.1 121.7 78.2

dom/wdeg
#timeouts 140 123 121

avg time 47.8 56.0 43.6

Table 1. Number of unsolved instances and average cpu time on the 2005 CSP competition
benchmarks, given 30 minutes CPU.

Finally, we noticed that the number and the size of the reduced nld-nogoods recorded
during search were always very limited. As an illustration, let us consider the hardest
RLFAP instance scen11− f1 which involves 680 variables and a greatest domain size
of 43 values. MAC+RST+NG solved this instance in 36 runs while only 712 nogoods
of average size 8.5 and maximum size 33 were recorded.
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Fig. 3. Pairwise comparison (cpu time) on the 2005 CSP competition benchmarks using the
dom/ddeg heuristic
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Fig. 4. Pairwise comparison (cpu time) on the 2005 CSP competition benchmarks using the
dom/wdeg heuristic



MAC
+ RST + RST + NG

scen11-f12
cpu 0.85 0.84 0.84

nodes 695 477 445

scen11-f10
cpu 0.95 0.82 1.03

nodes 862 452 636

scen11-f8
cpu 14.6 1.8 1.9

nodes 14068 1359 1401

scen11-f7
cpu 185 9.4 8.4

nodes 207K 9530 8096

scen11-f6
cpu 260 21.8 16.9

nodes 302K 22002 16423

scen11-f5
cpu 1067 105 82.3

nodes 1327K 117K 90491

scen11-f4
cpu 2494 367 339

nodes 2826K 419K 415K

scen11-f3
cpu 9498 1207 1035

nodes 12M 1517K 1286K

scen11-f2
cpu 29K 3964 3378

nodes 37M 5011K 4087K

scen11-f1
cpu 69K 9212 8475

nodes 93M 12M 10M

Table 2. Performance on hard RLFAP Instances using the dom/wdeg heuristic (no timeout)

7 Conclusion

In this paper, we have studied the interest of recording nogoods in conjunction with a
restart strategy. The benefit of restarting search is that the heavy-tailed phenomenon ob-
served on some instances can be avoided. The drawback is that we can explore several
times the same parts of the search tree. We have shown that it is quite easy to eliminate
this drawback by recording a set of nogoods at the end of each run (similarly to the
search signature technique proposed [1] for SAT). For efficiency reasons, nogoods are
recorded in a base (and so do not correspond to new constraints) and propagation is per-
formed using the 2-literal watching technique introduced for SAT. One can consider the
base of nogoods as a unique global constraint with an efficient associated propagation
algorithm.

Our experimental results show the effectiveness of our approach since the state-of-
the-art generic algorithm MAC-dom/wdeg is improved. Our approach not only allows
to solve more instances than the classical approach within a given timeout, but also is,
on the average, faster on instances solved by both approaches.
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