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Abstract

In this papet, nogood recording is investigated for CSP within the ranidation and restart
framework. Our goal is to avoid the same situations to oc@mfone run to the next ones. More
precisely, nogoods are recorded when the current cutafievisl reached, i.e. before restarting the
search algorithm. Such a set of nogoods is extracted frontaitebranch of the current search
tree and exploited using the structure of watched literalgimally proposed for SAT. We prove
that the worst-case time complexity of extracting such maigoat the end of each run is only
O(n2d) wheren is the number of variables of the constraint network ditbe size of the greatest
domain, whereas for any node of the search tree, the wossttitme complexity of exploiting
these nogoods to enforce Generalized Arc Consistency (GAOfn|#|) where|%| denotes the
number of recorded nogoods. As the number of nogoods redtmefere each new run is bounded
by the length of the last branch, the total number of recorsmbods is polynomial in the number
of restarts. Interestingly, we show that when the minini@abf the nogoods is envisioned with
respect to an inference operatfrit is possible to directly identify some nogoods that carre
minimized. Forgp = AC (i.e. for MAC), the worst-case time complexity of extragtiminimal
nogoods is slightly increased to @¢d>®) wheree is the number of constraints of the network.
Experimentation over a wide range of CSP instances usingiarigestate-of-the-art CSP solver
demonstrates the effectiveness of this approach. Regprdigoods (and in particular, minimal
nogoods) from restarts significantly improves the robussrod the solver.
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1. Introduction

Nogood recording (or learning) has been suggested as a techniqgnéadnce CSP (Constraint
Satisfaction Problem) solving id{)]. The principle is to record a nogood whenever a conflict occurs
during a backtracking search. Such nogoods can then be exploitetblg@i@vent the exploration
of useless parts of the search tree. The first experimental resultsaabtaiithh learning were given
in the early 90’s 10, 14, 37].

Contrary to CSP, the recent impressive progress in SAT (Boolean 8hilitfi Problem) has
been achieved using nogood recording (clause learning) undedamézation and restart policy

1. This paper extend7] by exploiting a nogood minimization technique and providing further drpemts.
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enhanced with a very efficient lazy data structuig)[ Indeed, the interest of clause learning has
arisen with the availability of large instances (encoding practical applicatidnish contain some
structures and exhibit heavy-tailed phenomenon. Learning in SAT is aatygiccessful technique
obtained from the cross fertilization between CSP and SAT: nogooddiegofl(] and conflict
directed backjumping34] have been introduced for CSP and later imported into SAT solZefs].

Recently, a generalization of nogoods, as well as an elegant learningdnétive been pro-
posed in 23, 24] for CSP. While standard nogoods correspond to variable assignrgenesalized
nogoods also involve value refutations. These generalized nogood§itdeom nice features. For
example, they can compactly capture large sets of standard nogoodseapbeed to be more
powerful than standard ones to prune the search space.

As the set of nogoods that can be recorded might be of exponentiabsiganeeds to achieve
some restrictions. For example, in SAT, learned nogoods are not minimakatichited in number
using the First Unique Implication Point (First UIP) concept. Differemtarsts have been proposed
(e.g. relevance bounded learnirg])[ all of them attempt to find the best trade-off between the
overhead of learning and performance improvements. Consequenthgcibreled nogoods cannot
lead to a complete elimination of redundancy in search trees. An originalatiterfy: 1] to combine
search scattering and redundancy avoidance involves performidgmgnmps in the search space.
It is particularly relevant when an allotted time is given.

In this paper, nogood recording is investigated for CSP within the randtionzand restart
framework. The principle of our approach is to learn nogoods from tstebla@anch of the search
tree before each restart, discarding already explored parts of thehseee in subsequent runs.
Remark that a related approach has been proposédd 1%][for SAT in order to obtain a complete
restart strategy while reducing the number of recorded nogoods.nRogfmeaking, in our approach,
we manage nogoods by introducing a global constraint with a dedicatedh§lggorithm which
exploits watched literals3p]. Interestingly, this algorithm that allows to enforce Generalized Arc
Consistency (GAC) on the base of recorded nogoods can be easilyatet®do any constraint
propagation engine (e.g. se€&8]) but also to any generic GAC algorithm. The simplicity and the
good worst-case time complexity (only @@|) wheren denotes the number of variables of the
constraint network anfig| the number of nogoods in the bag8 render this approach attractive.
As the number of nogoods recorded before each new run is bougdbd kength of the last branch
of the search tree, the total number of recorded nogoods is polynomia inutinber of restarts.
Besides, we show that it is possible to directly identify some nogoods thabtae subject to
minimization with respect to an inference operator

The paper is organized as follows. After some technical backgroumthtvoduce so-called re-
duced nld-nogoods and the principle of nogood recording from testEinen we present a detailed
description of how such nogoods are extracted and exploited in the taftadacktrack search
algorithm. Next, we address the issue of minimizing reduced nld-nogoodsllyFima give the
results of a vast experimentation that we have conducted before corglud

2. Technical Background

A Constraint Network (CN)P is a pair(Z", %) where 2" is a set of variables and” a set of
constraints. Each variablg € 2" has an associated domain, denaledi X ), which contains the
set of values allowed faX . Each constrain€ € ¢ involves a subset of variables &', denoted
vargC'), and has an associated relation, dene&@”'), which contains the set of tuples allowed
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for varg(C'). The number of variables of a CN will be denotedrhythe number of constraints ley
the greatest domain size byand the greatest constraint arity byAlso, for any given sel, | E|
will denote the number of elements in

A solution to a CN is an assignment of values to all the variables such that abtistraints
are satisfied. A CN is said to be satisfiable if and only if it admits at least onéoluThe
Constraint Satisfaction Problem (CSP) is the NP-complete task of determihigitp@r a given CN
is satisfiable. A CSP instance is then defined by a CN, and solving it invalhes &nding one (or
more) solution or determining its unsatisfiability. To solve a CSP instance, on@adify the CN
by using inference or search method4][

The backtracking algorithm (BT) is a central algorithm for solving CSP iesta. It performs
a depth-first search in order to instantiate variables and a backtraclkamsechwhen dead-ends
occur. Many works have been devoted to improve its forward and karckphases by introducing
look-ahead and look-back schemégd][ Today, MAC [36] is the (look-ahead) algorithm consid-
ered as the most efficient generic approach to solve CSP instancesntaimsaa property called
Arc Consistency (AC) during search. When mentioning MAC, it is importarihtticate which
branching scheme is employed. Indeed, it is possible to consider bikxargy() branching or non
binary (d-way) branching. These two schemes are not equivalent as it hashean that binary
branching is more powerful (to refute unsatisfiable instances) thamimamy branchingZ0]. With
binary branching, at each step of search, a p&irj is selected wher& is an unassigned variable
anda a value in domk), and two cases are considered: the assigndiest a and the refutation
X # a. The MAC algorithm (using binary branching) can then be seen as buiidliigary tree.
Classically, MAC always starts by assigning variables before refutihggsaGeneralized Arc Con-
sistency (GAC) (e.g.4]) extends AC to non binary constraints, and MGAC is the search algorithm
that maintains GAC.

Although sophisticated look-back algorithms such as CBJ (Conflict Dir&aekjumping) B4]
and DBT (Dynamic Backtracking)lp] exist, it has been showrB[5, 25] that MGAC combined
with a good variable ordering heuristic often outperforms such techniques

3. Reduced nld-Nogoods

From now on, we will consider a search tree built by a backtrackingedgorithm (e.g. MGAC)
that is based on the 2-way branching scheme, positive decisions befiogmped first, and that
maintains a consistency (e.g. Generalized Arc Consistency) at each @idd branch of the
search tree can then be seen as a sequence of positive and neggiiiend, defined as follows:

Definition 1. LetP = (27,%) be aCN and (X ,a) be a pair such thaX € 2" anda € dom(X).
The assignmenk = q is called a positive decision whereas the refutatiin# a is called a
negative decision—(X = a) is equivalent taX # a and—(X # a) is equivalent taX = a.

Definition 2. LetY = (01,...,4;,...,d,) be a sequence of decisions. The sequédce. ., J;),
where); is a negative decision, is called a nld-subsequence (negative last desigisaquence) of
¥.. The set of positive and negative decisionE @fre denoted byos(X) andneg(X), respectively.

Definition 3. Let P be aC' N and A be a set of decisions?| A is the CN obtained fron® such that,
for any positive decisionX = a) € A, dom(X) is restricted to{a}, and, for any negative decision
(X #a) € A, ais removed from donk).
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Definition 4. Let P be aC' N andA be a set of decisions\ is a nogood of iff P|a is unsatisfiable.

From any branch of the search tree, from the root to a leaf, a nogoodeextracted from each
negative decision (also mentioned 80]). This is stated by the following property:

Proposition 1. Let P be a CN and™ be the sequence of decisions taken along a branch of the
search tree. For any nld-subsequeriée, . . ., d;) of X, the setA = {6y, ...,—d;} is a nogood ofP?
(called nld-nogood).

Proof. As positive decisions are taken first, when the negative dedisisrencountered, the subtree
corresponding to the opposite decisiofy has been refuted. O

These nogoods contain both positive and negative decisions and tihespand to the definition
of generalized nogood4 3, 24]. In the following, we will show that nld-nogoods can be reduced in
size by considering positive decisions only.

Propositional resolution can be extended to directly deal with CSP nogeagdsn B1] where
it is called Constraint Resolution (C-Res for short). Note that we catysade C-Res since, in the
search tree, two opposite decisions, e.g. both- ¢ and X # a, cannot occur in the same branch
and consequently, cannot occur in any nogood. It can be defifetiass:

Definition 5. Let P be a CN, and\; =T'U{X =a} andAy = AU {X # a} be two nogoods of
P. We define Constraint Resolution as C-Reg Ag) = ' U A.

It is immediate that C-Ré¢a\;, As) is a nogood ofP.

Proposition 2. Let P be a CN and®X be the sequence of decisions taken along a branch of the
search tree. For any nld-subsequerice= (1,...,d;) of ¥, the setA = pos(X') U {—¢;} is a
nogood ofP (called reduced nld-nogood).

Proof. ¥’ = (41, ...,4;) is a nld-subsequence, so it contains 1 negative decisions, denoted by
dg1,---,0g,, in the order that they appear i Remark that we hav&,, = J;. Let us show by re-
currence that’j € [1, k], the following hypothesi () is true : A’ = pos(X') U{dg,, - - -, dg; , }U
{—d;} is a nogood ofP.

First, we show that (k) holds. From Propositioh, we know that\), = pos(X’)U{dg, , . .., g, _, }U
{=d;} is anogood sinc&\, is the nogood corresponding to the nid-subsequéice

Next, we show that ifi(j + 1) holds, them() holds too. By hypothesis)’ ; is a nogood off.
Let X; be the nid-subsequence corresponding to the prefl¥ siich thav,, is its last (negative)
decision (we havpos(X;) C pos(X') andneg(X;) = {dy,, . - -, dy, }), andA; be its corresponding
nogood according to Propositidn By applying Constraint Resolution, we have:

A;+1 = pOS( ) U {6917 tee 593'—1’69]'} U {ﬂ(sl}
Aj = pOS(E )U{591a-'-a59j—1}u{_‘69j}
C-ResA’ 1, 4;) = pos(X)Upos(E;) U{dg,- .00 1} U{=d;}
= pos(X)U{dg,...,0g,_,} U{0:}

sincepos(¥;) C pos(Y'), ~dy;, € Ajanddy, € AL . A = C-RegA’ 4, A
be a nogood of. As a consequence we have just proved thaj holds.
Forj = 1, we obtain thal\ = pos(X’) U {-;} isanogood ofP. O

;) is then proved to

2. The notationd1, ..., —d;} corresponds t§d; € ¥ | j < i} U {—d;} reduced to{—d; } when: = 1.
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As an illustration, le®> = (W = a, X # b, Y # ¢,Z = d) be a sequence of decisions taken
along a branch of the search tree. We have then:

o ¥ =(W=ua,X#b,Y # c) is anld-subsequence
o Ay =(W=u0a,X#b,Y =) is anld-nogood

o Ay = (W =a,Y = c¢) is areduced nld-nogood

One interesting aspect is that the space required to store all nogooelspmTding to any branch
of the search tree is polynomial with respect to the number of variables aigdgatest domain size.

Proposition 3. Let P be a CN and® be the sequence of decisions taken along a branch of the
search tree. The worst-case space complexity to record all nld-risgoi® is O(n?d?) while the
worst-case space complexity to record all reduced nld-nogoo8lsi®fo(2d).

Proof. First, the number of negative decisions in any branch isdD(For each negative decision,
we can extract a (reduced) nld-nogood. As the size of any (resucee) nld-nogood is @)
(resp. Of) since it only contains positive decisions), we obtain an overall spacgpleaity of
O(n2d?) (resp. O(%d)). O

It is important to note that reduced nld-nogoods extracted from a bighoiit a better pruning
capability than nld-nogoods extracted from the same branch since fornddsubsequence, the
corresponding nld-nogood is subsumed by the reduced nld-nogood.

4. Nogood Recording from Restarts

In[17], it has been shown that the runtime distribution produced by a randongaechsalgorithm is
sometimes characterized by an extremely long tail with some infinite moment. For setamecies,
this heavy-tailed phenomenon can be avoided by using randomizationstadsgi.e. by restarting
search several times while randomizing the employed search heuristicof&iraint satisfaction,
restarts have been shown productive on some problems. However]eenring is not exploited (as
it is currently the case for most of the academic and commercial solvergyénage performance
of the solver is damaged (cf. Secti@n

Nogood recording has not yet been shown to be quite convincing fér &M@ further, it is a
technique that leads, when uncontrolled, to an exponential space camplés propose to address
this issue by combining nogood recording and restarts in the following vemuced nld-nogoods
are extracted (to be recorded in a nogood base) from the curremtbodthe search tree at the end
of each run. Our aim is to benefit from both restarts and learning capabiitbout sacrificing
solver performance and space complexity.

Figure 1 depicts the partial search tree explored when the solver is about tot.reRtaitive
decisions being taken firstda(resp.—d;) corresponds to a positive (resp. negative) decision. Here,
search has been stopped after refutingand taking the decisiond,;. The nld-nogoods oP are
the following: Ay = {61, =02, 06, 8, =d9, 011}, A2 = {61, 702, 6, d8, 0o}, Az = {61, =02, d6 }
andA, = {51,52}.
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Figure 1. Partial search tree and nld-nogoods

The first reduced nld-nogood is obtained as follows:
All = C—Re$C—Re$C—Re$A1, AQ); A3)7 A4)
= C-ReiC'RE${61,_'52,_‘66,687511}7A3)aA4)
= C-Reg{01, 02,08, 011}, As)

= {01,08,611}
Applying the same principle to the other nld-nogoods, we obtain:
Aé = C-RGS{C-RG$A2, Ag), A4) = {51, s, 59}
Ag = C—Re$A3, A4) = {51, 56}
Al = Ay={6,6}

In order to avoid exploring the same parts of the search space durisgeuemt runs, recorded
nogoods can be exploited. Indeed, it suffices to control that the se¢as$ions of the current
branch does not contain all the decisions of any recorded nogoagkdvier, the negation of the last
undetermined decision of any nogood can be inferred as describednaxhgection. For example,
whenever the decisiofy becomes true, we can infew, from nogoodA and—ds from nogood
AL

Finally, we want to emphasize thaduced nld-nogoods extracted from the last branch subsume
all reduced nld-nogoods that could be extracted from any branchqusly explored This follows
from the fact that each subtree completely explored (and, thus, allagdeals that could be built
from all branches of this subtree) is prefixed by at least one nldetwgbthe last branch.

5. Managing Nogoods

In this section, we show how to efficiently exploit reduced nld-nogoodsslinyg the SAT technique

of watched literals32, 42, 12]. Reduced nld-nogoods, which correspond to sets (conjunctions) of
positive decisions, will be recorded as disjunctions of hegative desisibich can be seen as new
constraints to be satisfied. We then present an efficient propagatiaittalgenforcing GAC on all
learned reduced nld-nogoods that can be collectively consideredlalsa constraint.
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5.1 Nogood Base and Watched Literals

Reduced nld-nogoods that are extracted from the last branch onlgic@ositive decisions and
can be recorded in a base of nogoods To exploit them, it suffices, each time a decision is taken
during search, to check if the set of current decisions is compatible wittoghods of.

In order to provide an efficient access to these nogoods we use tagt@zstructure of watched
literals [32, 42, 12] depicted by Figur&. The principle is to select two decisions per nogood in order
to ensure that the nogood is not violated (one watched decision wouldfiogesit) and no inference
can be performed (using the second watched decision). These dea@s#ocalled watched literals
(referenced byw; andws in Figure2). As long as both watched literals are not falsified, inference
is not possible. Note that, in our case, watched literals correspond tdiveedacisions since
reduced nld-nogoods only contain positive decisions and we represemnogood as a disjunction
of negative decisions. When a decisi@in= a is performed, we have then to check for each nogood
which containsX # a as watched literal, if another valid decision can be found. If this is the case,
this decision becomes the new watched one (replaking a), and otherwise, we have to infer the
second watched decision in order to satisfy the nogood.

In practice, when a decisioX = « is performed, only nogoods wher€ # « appears as
watched are checked. We maintain for each negative decision the lisgobds which includes
this decision as watched literal. The required data structures can beddafiriellows. First, we
need an array atd entries. Each entry corresponds to a negative decésam represents the head
of a linked list allowing the access to the nogoods#Which containé as watched literal. We can
access to such a list, denotéf, in constant time. Each nogood which is an array of (at mdst
negative decisions is associated with two watched literals. In Figjupee can observe a nogood

[ L )
X # o o [nil] | |
I Pl |
) S S l
| |
| w1 wWo |
| |
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Figure 2. Partial view of a nogood base %
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Algorithm 1 storeNogoods{ : Sequence of Decisiong4 : Nogood base )
1A~
2: for each decision € . ranging from the first decision af to the lastdo
3. if ¢ is a positive decisiothen

4: A — AU{-d}

5. else

6: if A =( then

7: removea from dom(X) where§ = (X # a), for all subsequent runs
8: else

o: A — AU{d}

10: B — BI{A'}

11: end if

12:  endif

13: end for

base with two recorded nogoods. The first is watche&by a andZ # ¢ whereas the second one
is watched byX # a andW # d.

5.2 Recording Nogoods

Reduced nld-nogoods derived from the current branch of thelsese when the current run is
stopped can be recorded by calling #tere N ogoods function (see Algorithiml). The parameters
of this function are the sequence of decisions labelling the currentiibtaken from the root to the
leaf and the current nogood base. As observed in Segtianmeduced nld-nogood can be recorded
from each negative decision occurring in this sequence. From thdadbe leaf of the current
branch, when a positive decision is encountered, its negation is relaadd when a negative
decision is encountered, we build a nogakdfrom this decision and all previously recorded ones
in the setA (line 9). As a nogood is stored as a disjunction of negative decisions, wedrduer
negation of the (positive) decision (lirg. If the nogood is of sizé&, it can be directly exploited
by reducing the domain of the involved variable (lifle Otherwise, it is recorded into the nogood
base# (line 10).

Two decisions are watched each time a nogood is recorded. Note thaeeisiod of A can
be watched since the search algorithm is about to restart. It means thabtlelegted decisions
will be valid at the beginning of the next run. For each selected decisioewaentry (for the new
nogood) is inserted in the list of nogoods watched by this decision.

5.3 Exploiting Nogoods

Inferences can be performed using reduced nld-nogoods whildiskiagy (maintaining) General-
ized Arc Consistency. We show it with a coarse-grained GAC algorithmdbais a variable-oriented
propagation schemé&(), 8, 6]. Algorithm 2 can be applied to any CN (involving constraints of any
arity) in order to establish GAC. At preprocessingppagate must be called with the se&f of
variables of the network whereas during searghgnly contains the variable involved in the last
positive or negative decision. At any time, the principle is to hav@ &l variables whose domains
have been reduced by propagation.
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Algorithm 2 propagate§ : Set of Variables) : Boolean

1. QS

2: while Q # 0 do

3: pick and deleteX from @

4. if | dom(X) | = 1then

5: Let dom(X) = {a}

6: for each(Y # b) € inferences(X # a) do
7: dom(Y) — dom(Y)\{b}

8: if dom(Y") = ) then return false
o: elseQ — QU {Y}
10: end for
11:  endif

12 for eachC | X € vars(C) do
13: for eachY € Vars(C) | X #Y do

14: if revise(C,Y) then

15: if dom(Y") = () then return false
16: elseQ — QU {Y}

17: end if

18: end for

19: end for

20: end while

21: return true

Algorithm 3 inferencesk ## a : Decision) : Set of Decisions

1T«
2: for each nogood\ € #x, do

3:  Let(Y # b) be the second decision watchedAn
4: if be dom(Y) then

5: if = canFindAnotherWatch(A, X # a) then
6: I —TU{Y #b}

7 end if

8 endif

9: end for
10: returnl’

Algorithm 4 canFindAnotherWatckY : Nogood,X # a : Decision) : Boolean

1: for each decisiontY” # b) € A |Y # bis not watched imA do

2. ifb¢ dom(Y)or|dom(Y) |>1then
3 watchY # b instead ofX # a in A
4: returntrue

5. endif

6: end for

7. return false
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Initially, @@ contains all variables of the given s&t(line 1). Then, iteratively, each variable
X of @ is selected (line3). If dom(X) corresponds to a singletcfu} (lines4 to 11), we can
exploit recorded nogoods by checking the consistency of the nogasel brhis is performed by
the functionin ferences (described below) which iterates all nogoods involviXig# a as watched
literal and returns a set of inferences deduced from such nogddus.set of inferences is then
taken into account: for each identified inferefi¢e# b € inferences(X # a), if b belongs to
dom(Y"), then we can remove it, which can yield an inconsistency or an update sétée

The rest of the algorithm (linek to 19) corresponds to the body of a classical generic coarse-
grained GAC algorithm. For each constraditbinding X, we perform the revision of all arcs
(C,Y)withY # X. Arevision is performed by a call to the functioavise, specific to the chosen
coarse-grained arc consistency algorithm, and entails removing valtilbgtiane inconsistent with
respect taC'. When the revision of an af@”, Y') involves the removal of some valuesdom(Y),
revise returnstrue and the variablé” is added ta?). For more information about this algorithm
and some optimizations, sed.[ The algorithm loops until a fixed point is reached.

The principle of Algorithn is to iterate the list of nogoods involving as watched literal the deci-
sion given in parameter. For each such nogood, denotédldtyeach turn of the main loop, we have
to look for another watched literal when the second decision watch&dsmot true, i.eb has been
removed fromdom(Y) (line 4). This is done by calling the functiotun F'ind AnotherWatch. If
we cannot find a new watched decision (see linehen the second watched decision # b) is
inferred.

Finally, the functioncan F'ind AnotherW atch (see Algorithm4) examines all decisions (not
currently watched) of the given nogood in order to find the next dectsiavatch (line3). Such a
decision is either already satisfied or unassigned ¢jne

Even if not described here, note that when a new watched literal hasftwed, we have to
remove the entry (corresponding to the nogdodfrom the list of nogoods involvingd # a as
watched literal. Next we have to update (i.e. add an entry) the list of negoedlvingY # b as
new watched literal.

5.4 Complexity Analysis

Now, we present the complexities of the different algorithms proposedr® aital exploit nogoods.
For what follows, remember tha# denotes the nogood base gagl the number of nogoods .

Proposition 4. The worst-case time complexity of recording reduced nld-nogoodséstarts (i.e.
the worst-case time complexity @bre N ogoods) is O(n?d).

Proof. First, each nogoodh added toZ (line 10 of Algorithm 1) is composed of at mogpos(X)|
decisions, and at mogteg(3)| nogoods can be extracted frath Then, we can observe that the
worst-case time complexity oftore Nogoods is O(pos(X)|.|neg(X)|). As |pos(X)| is O(n) and
Ineg(X)| is O(nd), we obtain O¢?d). O

Proposition 5. The worst-case time complexity of exploiting reduced nld-nogoods &t reade
of the search, i.e. the cumulated worst-case time complexity fafrences for a single call to
propagate is O(n|%A)).

Proof sketchFirst, it is important to note that when a decisi&n# a (potentially watched) is not
valid anymore (i.e.a is the only value remaining in the domain &f), then it cannot be watched

10



RECORDING AND MINIMIZING NOGOODS FROMRESTARTS

again (during a same call t@-opagate). Also, when looking for a decision to be watched in a
reduced nld-nogood (i.e. a set of negative decisions), we can iteratecisions in any order. To
obtain the mentioned complexity, we need a refinement (not presented &akbef simplicity) of
the functioncan F'ind AnotherW atch described in this paper. Considering that the set of decisions
of each nogood is represented using an array, we assume hereftirat daling thepropagate
algorithm, the two first decisions of each array are swapped with thosentiyrwatched. This
operation can be performed in [&]). Then, whenever we need to find a new watched literal using
thecan F'ind AnotherW atch function, we just have to iterate the decisions of the nogaddiven
in parameter) by starting from the index that follows the greatest positiootbfdecisions currently
watched up to the last decision in the array. As a consequence, foratin® the propagate
algorithm, whatever the number @in Find AnotherW atch (and soin ferences) calls is, we will
check up to/A| decisions per nogood. Consequently, the cumulated worst-case complexity of
managing any nogood is then O(A|) which is O@). Overall, the cumulated worst-case time
complexity ofin ferences in propagate is then O¢|A|). O

Remark that the worst-case time complexity of exploiting reduced nld-nogoodach branch
of the search tree, from the root to a leaf, im@(@p since the event “variable whose domain
becomes singleton” can only happen once per variable and per branch.

Corollary 1. The worst-case time complexity @fopagate is O(er?d” + n|2%|) wherer is the
greatest constraint arity.

Proof. The cost of establishing GAC is @(d") when a generic algorithm such as GAC200]Li§
used and the cost of exploiting nogoods has just been shown tode)( O

Proposition 6. The worst-case space complexity of storing reduced nld-nogoods g @(4|)).

Proof. We know that|%8| nogoods of size at most are recorded. Further, the number of cells
introduced to access nogoods i§@() and the size of the array associated to each negative decision
is O(nd). We then obtain Of(d + |#|)). O

6. Minimal Reduced nld-Nogoods

In Section3, we proved that nld-nogoods can be reduced in size by considergitivpalecisions
only. Pursuing the same goal, we introduce in this section the concept of miredhated nld-
nogood with respect to an inference operato¥We can then obtain more powerful nogoods.

6.1 Minimal ¢-Nogoods

In the context of a backtrack search algorithm, ¢h@perator can be employed at any step of a tree
search, using a binary branching scheme. For example, MGAC comn@sto using an operator
that enforces (Generalized) Arc Consistency at each node of thehdeze.

Definition 6. Let P be aC'N, ¢(P) is the CN obtained after applying the operatoon P.

If there exists a variable with an empty domaingi?) then P is clearly unsatisfiable, denoted
¢(P) = L.

Definition 7. Let P be aC' N and A be a set of decisiong\ is a ¢-nogood ofP iff ¢(P|a) = L.
A is a minimalg-nogood ofP iff AA’ ¢ A such thaip(P|a/) = L.

11
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Obviously, p-nogoods are nogoods, but the opposite is not necessarily true. al$yst@ min-
imize a¢-nogood using a polynomial algorithm such as QuickXplain or one of its narig1].
In our context, we know that at the end of each run, we can extraatagdods from the current
branch and reduce them. One interesting thing is that nld-nogoods whkiclot-nogoods can be
directly identified and discarded. This is the case when the last deéjgiohthe nld-subsequence
from which a nld-nogood\ has been extracted, did not directly lead to a dead-end when applying
¢. It means that we had to explore a non trivial subtree from that deciSnrthe other hand, when
0., directly leads to a dead-end, we know that this decision necessarily seioramy$-nogood
included inA. As a consequence,, can be directly selected as the first transition decision of the
minimization algorithm defined in the next subsection.

]
’ direct dead—end/

Figure 3. Identification of (reduced) nld-nogoods susceptible to be minimized

Figure3 depicts a tree search for a run stopped after refutipgwhere an inference operator
¢ is maintained at each node. Among the four nld-nogoods that can betegtraaly two yield
a direct dead-endA; = {01, 02,06} and Ay = {d1, =2, =dg, 07, 08, d10}. A1 and A, are
clearly ¢-nogoods, as the application gfafter each decision directly leads to an inconsistency.
The reduced nld-nogoods that will be considered for minimization are fen= {41, ¢} and
A, = {61,07,010}. Remark that a reduced nld-nogood obtained from a nld-nogood whigh is
¢-nogood is not necessarily g-nogood itself. Indeed, some negative decisions removed when
reducing a nld-nogood may be involved in the conflict.

When reduced nld-nogoods can be highly minimized, the impact on sulrgegums can be
quite important. In the best case, one can expect to isolate migimagoods of sizd. They
correspond to singletom-inconsistent values. For example, let us consider the queens-knights
problem as proposed i and the algorithm MAC to solve it. As any knight variable is singleton
arc inconsistent, if such a variable is involved in the last decision of a eeduicl-nogood, then a
singleton arc inconsistent value will be proved by the minimization algorithm. Seméts that
confirm this behaviour are given in Tal#ef Section?.
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6.2 Minimization Techniques

Some works concerning the identification of minilgahogoods (also called conflict-sets) have
already been proposed]], 33]. As extracting a minimad-nogood is an activity limited to a branch
of a search tree, the proposed algorithms involve (at least, partially)straotive schema in order
to keep some incrementality of the propagation process. On the other handsttversion of
QuickXplain [22] exploits a divide and conquer approach (as28]] but is defined in a more
general context. For example, it can be used to extract Minimal Unsalisfidyes (MUCs) of
constraint networks which has been recently studied both theoreticallgxgadimentally in 19].

To summarize, in order to find a minimatnogood, it is necessary to iteratively identify the
decisions that are involved in it. More precisely, we know that, giveargoodA = {4, Jo,

.., 0, } of a CN P and a total ordering of the decisions (to simplify, we shall consider thealatur
orderdy, dz, ..., 6m Of the decisions), there exists a decisiprsuch thatp(P|¢s, 5, 1) 7 L
ando(Ps, ... 5,3) = L. This decision which clearly belongs to a miningahogood will be called
the transition decision ofA (according to the given ordering). Note also that any deci§jonith
j > i can be safely removed. This notion of transition decision is analogous tofthainsition
constraint defined inl[g].

To identify a transition decision, it is possible to use a constructive appraadestructive
approach or a dichotomic one. The principle of the constructive apipliedc successively add the
decisions ofA (according to the given ordering) to the CN until an inconsistency is detedien
applying¢. The principle of the destructive approach is to initally add all decisiorns taf the CN
and successively remove them one by one until no more inconsistendgésetbwhen applying.
As a third alternative, the transition decision can be identified by using atditimsearch.

To extract a minimag-nogood, it suffices to adopt one of the approaches described ahtier
finding a first' transition decisior; in A, one can search a second one after having removed all
decisionsy; with j > i of A (since unsatisfiability is preserved) and considering a new order of the
decisions such that all found transition decisions are the smallest onésa¢kground of22]). This
process can be repeated until all decisions of the current nogomespond to transition decisions
that have been successively found. The principle of this iterativeepsohas been described in
[9, 21, 33, 18].

In the context of identifying a minimal nogood, we can relate the constryatasructive and
dichotomic approaches succinctly described above to the algorithms cabediXplain, ReplayX-
plain and QuickXplain 21]. However, here, we will assume the incrementality of the inference
operatorg. It simply means that the worst-case time complexities of applyiran a given CN
from two respective sets of decisionsandA’ such thatA c A’ are equivalent. For example, all
(known) generic algorithms that enforge= (G)AC are incremental. As a consequence, using a
constructive approach to identify a transition decision is well-adapted tpunpose. This algo-
rithm will be used for our experimentation and its complexity is discussed in tktesnbsection.

6.3 Complexity Analysis

Proposition 7. The worst-case time complexity of extracting a minimal GAC-nogood fretiueed
nld-nogood is O¢nr2d").

3. If Ais a¢-nogood, then we can directly considir as the first transition decision.

13
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Proof. We know that a generic algorithm such as GAC2001 to enf6rd€’ on a CN is incremental.
As a consequence, using a constructive approach to identify a trargéigion is O¢r2d"), that
is to say the worst-case time complexity of establising GAC only once. If theatettanogood is
composed of: decisions, then we obtain an overall complexity ik@¢d"). As k is O(n), we
obtain O¢nr?d”) O

Corollary 2. In the binary case (i.e. for = 2), the worst-case time complexity of extracting a
minimal AC-nogood from a reduced nld-nogood is@¢).

Proposition 8. The worst-case time complexity of extracting minimal reduced GAC-rjdaus
(at the end of each run) is @¢2r2d"+1).

Proof. Extracting a GAC-nogood from a reduced nld-nogood ief®{d") and we know that there
is at most Ofd) reduced nld-nogoods to be minimized. O

Corollary 3. In the binary case (i.e. for = 2), the worst-case time complexity of recording
minimal reduced GAC-nld-nogoods (at the end of each run) isi&F).

7. Experiments

In order to show the practical interest of the approach described ingher pwe have conducted an
extensive experimentation (on a Xeon processor cadenced at 3 @HG# RAM). We have used
the CSP solver Abscon whose kernel is a MGAC algorithm (embedding GA{(Z%]). Abscon can
be considered as a state-of-the-art generic CSP solver, consithegiregults it obtained at the 2005
[39 and 2006 CSP solver competitiont(t p: / / www. cri | . univ-artois.fr/ CPAl 06).
We have studied the impact of exploiting restarts (denoted by MGAC+R®fpaud recording
from restarts (denoted by MGAC+RST+NG) and the same technique with miriatizaenoted
by MGAC+RST+NGm). Concerning the restart policy, the initial number ofnadid backtracks for
the first run has been set 10 and the increasing factor th5 (i.e. at each new run, the number
of allowed backtracks increases byl & factor). This is a geometric restart policy as introduced
in [40]. Note that we have tested other restart policies, but the relative beimafithe algorithms
described in this paper, remained relatively the same. In any case, aptimstudy of the impact
of different restart policies on these algorithms is beyond the scope qfapes.

For search, we used three different variable ordering heuristicscléissicalbrelaz [7] and
dom/ddeg [3] as well as the adaptivéom /wdeg that has been recently shown to be the most ef-
ficient generic heuristicq, 25, 19, 39]. Importantly, when restarts are performed, randomization is
introduced inbrelaz anddom/ddeg to break ties. Folom /wdeg, the weight of constraints are pre-
served from each run to the next one, which makes randomization uggkights are sufficiently
discriminant).

In our first experimentation, we have tested the four algorithms on the fuf 8e621 instances
used as benchmarks for the first round of the 2006 CSP solver competilioe time limit to
solve an instance was fixed 20 minutes. Tablel provides an overview of the results in terms of
the number of instances unsolved within the time lint{meouts) and the average cpu time in
secondsdvg time) computed from instances solved by all four methods.

First, on random instances, for all the heuristics, it appears thattiegtaearch is penalysing.
This is not surprising since there is no structure to exploit from one runetméixt one. This re-
sult confirms those observed on random SAT instances which do nibitextiy heavy-tailed phe-
nomenon. However, by recording nogoods, we approximately obtairathe sesults than MGAC

14


http://www.cril.univ-artois.fr/CPAI06

RECORDING AND MINIMIZING NOGOODS FROMRESTARTS

MGAC
+RST [ +RST+NG | +RST+NGm
Random instances (1,390 instances)
#timeouts 270 301 276 273
dom/ddeg | * iime 40.4 57.6 41.9 42.0
brel #timeouts 305 330 311 311
eraz avg time 73.2 103.2 70.5 71.1
#timeouts 266 278 274 268
dom/wdeg | T time 36.4 45.8 38.1 41.2
Structured instances (2,231 instances)
#timeouts 873 863 825 772
dom/ddeg | " time 87.5 97.8 79.7 72.4
brel #timeouts 789 788 757 738
reaz avg time 79.0 92.4 74.8 715
F#timeouts 623 554 551 551
dom/wdeg | T time 50.5 51.3 51.4 50.8
All (3,621 instances)
F#timeouts 1,143 1,164 1,101 1,045
dom/ddeg | " iime 66.1 79.6 62.6 58.6
brelas #timeouts 1,094 1,118 1,068 1,049
avg time 76.4 97.3 72.8 71.3
F#timeouts 889 832 825 819
dom /wde
9 | avg time 44.1 48.8 45.4 46.5

Table 1. Number of unsolved instances and average cpu time on the benchmarks of the 2006 CSP
Solver Competition (first round), given 20 minutes.

without restarts. Second, on structured instances, as expectediingcoogoods from restarts is
benefiting. Also, minimizing nogoods has a significant impact, in particular wlessical heuris-
tics are used. In an overall analysis, while restarting without learning syieltigated results,
nogood recording from restarts significantly improves the robustnebe gblver. Indeed, both the
number of unsolved instances and the average cpu time are reduceds @hesto the fact that
the solver never explores several times the same portion of the seaoehveipite benefiting from
restarts. Another view on results in given by Figutes and6 which represent scatter plots display-
ing pairwise comparisons fatom /ddeg, brelaz anddom /wdeg. Note the presence of many dots
on the right-hand side of these figures which represent instancelvethdry the methods whose
name label the x-axis.

When focusing to the hardest instances (which invéR@variables and a greatest domain size
of about50 values) built from the real-world Radio Link Frequency Assignment Rral{RLFAP),
we have observed (see Tallethat using a restart policy allows to be more efficient by almost one
order of magnitude. Here, performance is measured in terms of cpu timec(inds), amount of
used memory (in bytes) and number of visited nodes. When we furtheriexptpod recording,
the gain is about0%. What is interesting to note here is that (w.r.t. our restart policy) recording
nogoods from restarts does not require a lot of memory. Also, we ndtieédhe number and the
size of the reduced nld-nogoods recorded during search wergsaleey limited. As an illustration,
MAC+RST+NG solved the instancecenl11-f1 in 36 runs (and3, 750 seconds) while only12
nogoods of average si&e5 and maximum siz83 were recorded.
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Figure 4. Pairwise comparison (cpu time) on the 3, 621 instances used as benchmarks of the 2006
CSP Solver Competition (first round). The variable ordering heuristic is dom/ddeg and the timeout
to solve an instance is set to 20 minutes.
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Figure 5. Pairwise comparison (cpu time) on the 3, 621 instances used as benchmarks of the 2006
CSP Solver Competition (first round). The variable ordering heuristic is brelaz and the timeout to
solve an instance is set to 20 minutes.
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Figure 6. Pairwise comparison (cpu time) on the 3, 621 instances used as benchmarks of the 2006
CSP Solver Competition (first round). The variable ordering heuristic is dom/wdeg and the time-
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MGAC
+RST +RST+NG +RST+NCm
} cpu 5.8 4.9 5.0 5.0
scenll-fl0 | 29M 31M 32M 32M
nodes 891 403 405 556
~ cpu 10.2 5.5 5.8 6.1
scen11-f8 mem 29M 31M 32M 32M
nodes 15,045 1,149 1,098 1,287
] cpu 59.8 148 135 10.9
scen11-f6 mem 29M 31M 32M 32M
nodes 217K 35,030 25, 851 19,798
] o 9241 1411 116.6 125.9
scenl1-f4 mem 30M 31M 32M 32M
nodes 3,458 K 494K 450K 476 K
; cpu time-out 370.6 361.5 342.5
scenl1-f3 mem 31M 32M 32M
nodes 1,506 K 1,331K 1,314K
} cpu time-out time-out 1,135.3 1,137.7
scenl1-f2 mem 32M 32M
nodes 4,406 K 4,37T0K

Table 2. Performance on hard RLFAP Instances using the dom /wdeg heuristic (timeout set to 20
minutes)

Finally, we present in Tablé the results obtained for some instances of the queens-knights
problem usingdom/wdeg. As indicated in Sectior, minimizing nogoods is quite relevant on
this kind of instances since singleton arc inconsistent values can be detéutée that with the
dom /wdeg heuristic, results are less impressive. Indeed, itis explained by thia&chis heuristic
has a good capability of preventing thrashing.

MGAC
+RST +RST+NG +RST+NGm
dom/ddeg 265.1 408.9 256.2 2.1
qk-12-5-mul brelaz 255.7 377.9 250.8 2.1
dom/wdeg 3.1 1.8 2.6 1.6
dom/ddeg time-out time-out time-out 4.9
qk-25-5-mul brelaz time-out time-out time-out 5.1
dom /wdeg time-out 4.2 4.8 4.3
dom/ddeg time-out time-out time-out 67.3
qk-50-5-mul brelaz time-out time-out time-out 65.3
dom /wdeg time-out 59.5 44.6 43.9

Table 3. Cpu time to solve some instances of the queens-knights problem, given 20 minutes.

8. Conclusion

In this paper, we have studied the interest of recording nogoods inradigo with a restart strategy.
The benefit of restarting search is that the heavy-tailed phenomenervetison some structured
instances can be avoided. The drawback is that we can explore Iséavers the same parts of
the search tree. We have shown that it is quite easy to eliminate this drawpae&drding a set

of nogoods at the end of each run (that can be related tedhrch signaturéechnique proposed
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[1] for SAT). For efficiency reasons, nogoods are recorded in a f@sd so do not correspond to
new constraints) and propagation is performed usingiteral watching technique introduced for
SAT. One can consider the base of nogoods as a unique global doinsith an efficient associated
propagation algorithm.

Interestingly, this filtering algorithm can be embedded as a new propagaamytoonstraint
propagation engine but it can also be easily integrated to any generic @Afttam as we have
shown in this paper. In our approach, reduced nld-nogoods pomdsto positive decisions only,
and so, can be classified as standard nogoods. One advantage ig ttainhiexity of managing
the base of nogoods is small since the only event we need to interceptrisawlagiable becomes
fixed (its domain becoming a singleton). 4], it has been shown that generalized nogoods are
more powerful than standard nogoods. However, it is not immediate if tmairs true when a
binary branching scheme is usétfl]. In any case, it appears that one perspective to the approach
proposed in this paper is to compute generalized nogoods, that is to salydct eminimal (not
reduced) nld-nogoods from the last branch. The theoretical amtigabaspects of this alternative
deserve to be studied.
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