
Divide-and-Evolve: the Marriage of Descartes and Darwin

Johann Dreo Pierre Savéant
Thales Research & Technology

Palaiseau, France
first.last@thalesgroup.com

Marc Schoenauer
INRIA Saclay & LRI

Orsay, France
marc.schoenauer@inria.fr

Vincent Vidal
ONERA – DCSD
Toulouse, France

Vincent.Vidal@onera.fr

Abstract

DAEX, the concrete implementation of the Divide-and-
Evolve paradigm, is a domain-independent satisficing plan-
ning system based on Evolutionary Computation. The basic
principle is to carry out a Divide-and-Conquer strategy driven
by an evolutionary algorithm. The key components of DAEX
are a state-based decomposition principle, an evolutionary al-
gorithm to drive the optimization process, and an embedded
planner X to solve the sub-problems. The release that has
been submitted to the competition is DAEYAHSP, the instan-
tiation of DAEX with the heuristic forward search YAHSP
planner. The marriage of DAE and YAHSP matches a clean
role separation: YAHSP gets a few tries to find a solution
quickly whereas DAE controls the optimization process.

Introduction
This section introduces the main principles of the satisfic-
ing planner DAE, referring to (Bibaı̈ et al. 2010c) for a
comprehensive presentation. DAEX, the concrete imple-
mentation of the Divide-and-Evolve paradigm, is a domain-
independent satisficing planning system based on Evolution-
ary Computation (Schoenauer, Savéant, and Vidal 2006).
The basic principle is to carry out a Divide-and-Conquer
strategy driven by an evolutionary algorithm. The algorithm
is detailed in (Bibaı̈ et al. 2010a) and compared with state-
of-the-art planners.

Given a planning problem P = 〈A,O, I,G〉, whereA de-
notes the set of atoms,O the set of actions, I the initial state,
and G the goal state, DAEX searches the space of sequences
of partial states (si)i∈[0,n+1], with s0 = I and sn+1 = G:
DAEX looks for the sequence such that the plan σ ob-
tained by compressing subplans σi found by some embed-
ded planner X as solutions of Pi = 〈A,O, ŝi, si+1〉i∈[0,n]
has the best possible quality (with ŝi denoting the final state
reached by applying σi−1 from ŝi−1). Each intermediate
state (si)i∈[1,n] is first seen as a set of goals and then com-
pleted as a new initial state for the next step by simply apply-
ing the plan found to reach it. In order to reduce the number
of atoms used to describe these states, DAE relies on the ad-
missible heuristic function h1 (Haslum and Geffner 2000a):
only the ones that are possibly true according to h1 are con-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sidered. A diagram of the decomposition approach in DAE
is depicted on figure 1.

O4

O3

O2

O1

O0

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A0

A1

A2

A3

A4

A0

A1

A2

A3

A5

A7

A8

A6

A4

A0

A1

A2

A3

A5

A7

A8

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8h :

1
time

I G1 G2 G{ },decomposition:

Goal's atom

Atom
True atom A0

False atomA0

Action

Legend

GoalG0

Figure 1: The decomposition approach used in DAE.

Furthermore, mutually exclusive atoms, which can be
computed at low cost, are also forbidden in intermediate
states si. These two rules are strictly imposed during the
random initialization phase, and progressively relaxed dur-
ing the search phase. The compression of subplans is re-
quired by temporal planning where actions can run concur-
rently: a simple concatenation would obviously not produce
the minimal makespan.

Due to the weak structure of the search space (variable-
length sequences of variable-length lists of atoms), Evolu-
tionary Algorithms (EAs) have been chosen as the method
of choice: EAs are metaheuristics that are flexible enough to
explore such spaces, as long as they are provided with some
stochastic variation operators (aka move operators in the
heuristic search community) – and of course some objective
function to optimize.

Variation operators in DAE are (i) a crossover opera-
tor, a straightforward adaptation of the standard one-point
crossover to variable-length sequences; and (ii) different
mutation operators, that modify the sequence at hand either
at the sequence level, or at the state level, randomly adding
or removing one item (state or atom).



The objective value is obtained by running the embed-
ded planner on the successive subproblems. When the goal
state is reached, a feasibility fitness is computed based on
the compression of solution subplans, favoring quality; oth-
erwise, an unfeasibility fitness is computed, implementing
a gradient towards satisfiability (see (Bibaı̈ et al. 2010c) for
details).

DAE can embed any existing planner, and has to-date
been successful with both the optimal planner CPT (Vidal
and Geffner 2004) and the lookahead heuristic-based satis-
ficing planner YAHSP (Vidal 2004). The latter has been
demonstrated to outperform the former when used within
DAE (Bibaı̈ et al. 2010d), so only DAEYAHSP has been con-
sidered in this work.

The target is thus temporal satificing planning with con-
servative semantics, cost planning and classical STRIPS
planning. The marriage of DAE and YAHSP matches a
clean role separation: YAHSP gets a few tries to find a solu-
tion quickly whereas DAE controls the optimization process.
In the current release we have introduced an initial estima-
tion processing of the maximum number of tries allowed to
YAHSP for all individual evaluations. This parameter is cru-
cial for the time consumption of the algorithm.

Algorithms
DAEX is an evolutionary algorithm, which basically mimics
a biological evolution as a stochastic process (i.e. using bi-
ased random search in an iterative manner). Figure 2 depicts
the main components of the evolution engine of DAEYAHSP.

Bes
t solut

ion

Paren
ts

Genitors

O
ffs
pr

ing
s

Stop criteria?

Evaluation

DAE
YAHSP

A4

A5

A7

A8

A0

A1

A2

A3

G1

A6

A4

A0

A1

A2

A3

A5

A7

A8

G2{ },

A9

A6

A4

A0

A1

A2

A3

A5

A7

A8

G3,

Variation

Crossover

Mutations

Add Atom Del Atom

Add Goal Del Goal

Replacement

Weak Elitism

Comma

Selection

Tournament

Initialization

Random goals subset

Random atoms subset

A4

A5

A7

A8

A0

A1

A2

A3

G1

A6

A4

A0

A1

A2

A3

A5

A7

A8

G2{ },

A9

A6

A4

A0

A1

A2

A3

A5

A7

A8

G3,

Steady Fitness

Multi-start

YAHSPYAHSPYAHSPYAHSP

Figure 2: The evolution engine used in DAEYAHSP. Yellow
boxes indicates problem-dependent operators, green ones
problem-independent operators and red boxes indicates the
planner-dependent fitness evaluation. The output of the evo-
lutionary algorithm is a decomposition of the problem.

The fitness implements a gradient towards feasibility for
unfeasible individuals and a gradient towards optimality for
feasible individuals. Feasible individuals are always pre-
ferred to unfeasible ones. Population initialization as well as
variation operators are driven by the critical path h1 heuristic
(Haslum and Geffner 2000b) in order to discard inconsistent

state orderings, and atom mutual exclusivity inference in or-
der to discard inconsistent states. These two computations
are done by YAHSP in an initial phase.

Beside a standard one-point crossover for variable length
representations, four mutations have been defined: addition
(resp. removal) of a goal in a sequence, addition (resp. re-
moval) of an atom in a goal.

Variation operators relax the strictly h1 ordering of atoms
within individuals, since it is only a heuristic estimate.

The selection is a comparison-based deterministic tourna-
ment of size 5.

For the sequential release, Darwinian-related parameters
of DAEX have been fixed after some early experiments
(Schoenauer, Savéant, and Vidal 2006) whereas parameters
related to the variation operators have been tuned using the
Racing method (Bibaı̈ et al. 2010b). It should be noted that,
due to the conditions of the competition, the parameter set-
ting is global to all domains. In (Bibaı̈ et al. 2010b) we
showed that a specific tuning for an instance provides better
results as expected and that what we would do for a real-life
planning task.

We added two novelties to the version described in (Bibaı̈
et al. 2010a). One important parameter is the maximum
number of expanded nodes allowed to the YAHSP sub-
solver which defines empirically what is considered as an
easy problem for YAHSP. As a matter of fact, the minimum
number of required nodes varies from few nodes to thou-
sands depending of the planning task. In the current release
this number is estimated during the population initialization
stage. An incremental loop is performed until the ratio of
feasible individuals is over a given threshold or a maximum
boundary has been reached. By default this number is dou-
bled at each iteration until at least one feasible individual is
produced or 100,000 has been reached.

Furthermore we add the capability to perform restarts
within a time contract in order to increase solution quality.

The fitness used for the competition differs from the one
described in (Bibaı̈ et al. 2010a). The fitness for bad indi-
viduals has been simplified by withdrawing the Hamming
distance to the goal. The new fitness depends only on the
“decomposition distance”: the number of intermediate goals
reached and more specifically the one that are “useful”. A
useful intermediate goal is a goal that require a non-empty
plan to be reached.

Implementation
The implementation of DAEX has been made with the
ParadisEO framework1 which provides an abstract control
structure to develop any kind of evolutionary algorithm in
C++. YAHSP is written in the C language. The source
code is available under an open-source license and the ver-
sion used for the competition has the hash 9a46716 in the
official repository2.

In order to speed up search, a memoization mechanism
has been introduced in YAHSP and carefully controlled to

1http://paradiseo.gforge.inria.fr/
2https://gforge.inria.fr/git/paradiseo/

paradiseo.git



leave memory space for DAE. Indeed, most of the time dur-
ing a run of YAHSP, and as a consequence during a run of
DAEYAHSP, is spent in computing the hadd heuristic for each
encountered state (see (Vidal 2011) for more details about
the algorithms of the new version of the YAHSP planner).
During a single run of YAHSP, duplicate states are dis-
carded; but during a run of DAEYAHSP, the same state can be
encountered multiple times. We therefore keep track of the
hadd costs of all atoms in the problem for each state, in order
to avoid recomputing these values each time a duplicate state
is reached. This generally leads to a speedup comprised be-
tween 2 and 4. When DAEYAHSP runs out of memory, which
obviously happens much faster with the memoization strat-
egy, all stored states and associated costs are flushed. More
sophisticated strategies may be implemented, e.g. flushing
the oldest or less often encountered states; but we found that
the simplest solution of completely freeing the memoized
information was efficient enough.

Several biases have been introduced in YAHSP, in or-
der to help DAEYAHSP finding better solutions. The main
one is that actions of lower duration are preferred to break
ties between several actions of same hadd cost, when com-
puting relaxed plans and performing the relaxed plan repair
strategy. Another bias is that the cost incrementation made
during hadd, which is usually equal to 1 for each applied ac-
tion, is made equal to either the duration or the cost of the
action. Although these biases do not change a lot the quality
of the plans produced by YAHSP alone, we found that they
are of better help to DAEYAHSP. However, introducing such
biases is not very satisfactorily; it would be better to exactly
use the version described in (Vidal 2011). We still have to
better investigate the relationships between the evolutionary
engine and the embedded planner, in order to determine how
to manage such kind of biases and other tie-breaking strate-
gies.

The version submitted to the sequential multi-core track
use a parallelized evaluation operator that dispatch the fit-
ness computation across multiple processes using message
passing. No change is made to the DAEYAHSP algorithm, the
implementation uses parallel operators wrappers available in
the ParadisEO framework, with a static assignment of jobs.
Note that while the source code permits a parallelization at
the multi-starts level, it is not used in the competition.

Acknowledgments
This work is being partially funded by the French Na-
tional Research Agency (ANR) through the COSINUS pro-
gramme, under the research contract DESCARWIN (ANR-
09-COSI-002).

References
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010a.
An Evolutionary Metaheuristic Based on State Decompo-
sition for Domain-Independent Satisficing Planning. In
20th International Conference on Automated Planning and
Scheduling (ICAPS-2010), 18–25. AAAI Press.
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010b.
On the Generality of Parameter Tuning in Evolutionary

Planning. In 20th Genetic and Evolutionary Computation
Conference (GECCO’10), 241–248. ACM Press.
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010c.
An Evolutionary Metaheuristic Based on State Decompo-
sition for Domain-Independent Satisficing Planning. In R.
Brafman et al., ed., 20th International Conference on Auto-
mated Planning and Scheduling (ICAPS-10), 18–25. AAAI
Press.
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010d.
On the Benefit of Sub-Optimality within the Divide-and-
Evolve Scheme. In Cowling, P., and Merz, P., eds., Proc.
10th EvoCOP, 23–34. LNCS 6022, Springer Verlag.
Haslum, P., and Geffner, H. 2000a. Admissible Heuristics
for Optimal Planning. In 5th Int. Conf. on AI Planning and
Scheduling (AIPS 2000), 140–149.
Haslum, P., and Geffner, H. 2000b. Admissible Heuristics
for Optimal Planning. In AIPS-2000, 70–82.
Schoenauer, M.; Savéant, P.; and Vidal, V. 2006.
Divide-and-Evolve: a New Memetic Scheme for Domain-
Independent Temporal Planning. In Gottlieb, J., and
Raidl, G., eds., 6th European Conference on Evolutionary
Computation in Combinatorial Optimization (EvoCOP’06).
Springer Verlag.
Vidal, V., and Geffner, H. 2004. Branching and Pruning: An
Optimal Temporal POCL Planner Based on Constraint Pro-
gramming. In Nineteenth National Conference on Artificial
Intelligence (AAAI-04), 570–577. AAAI Press.
Vidal, V. 2004. A Lookahead Strategy for Heuristic Search
Planning. In 14th International Conference on Planning and
Scheduling (ICAPS-04), 150–159. AAAI Press.
Vidal, V. 2011. YAHSP2: Keep It Simple, Stupid. In 7th

International Planning Competition (IPC-2011), Determin-
istic Part.


