
YAHSP2: Keep It Simple, Stupid

Vincent Vidal
ONERA – DCSD
Toulouse, France

Vincent.Vidal@onera.fr

Abstract

The idea of computing lookahead plans from relaxed
plans and using them in the forward state-space heuris-
tic search YAHSP planner has first been published in
2003. We show in this paper that this simple idea still
leads to very efficient planners in comparison with state-
of-the-art planners, in terms of running time. We de-
scribe the new implementation of lookahead search that
has been made in the second version of the YAHSP
planner, which has been considerably simplified since
the first implementation. We then show through an ex-
tensive comparison, over all existing IPC benchmarks,
that the resulting YAHSP2 planner outperforms state-
of-the-art planners in terms of cumulated number of
solved problems and running time. We also briefly de-
scribe YAHSP2-MT, an attempt to parallelize YAHSP2
for multi-core machines with shared memory.

Introduction
Since the 6th edition of the deterministic part of the Inter-
national Planning Competition (IPC) in 2008, an empha-
sis has been put on solution quality rather than on speed
in computing a single plan. In the 2008 and 2011 competi-
tions, deterministic planners were run during a fixed amount
of time and their objective was to find the best possible
plan within this time constraint. Although for real-world
applications plan quality is generally as important as find-
ing a solution (if not even more), we think that designing
fast planners is still a relevant task. Particularly, determin-
istic planners can be embedded into wider systems that fre-
quently call them with different initial states, goals or even
domain definitions, and use the solution plans for a partic-
ular objective. For example, the probabilistic planners FF-
Replan (Yoon, Fern, and Givan 2007) and RFF (Teichteil-
Königsbuch, Kuter, and Infantes 2010), winners of the prob-
abilistic tracks of the non-deterministic IPCs in 2004 and
2008 respectively, make heavy use of the FF planner to solve
determinized problems extracted from the probabilistic one.
They then combine the solutions given by FF into a policy
for the probabilistic problem. Another example is the DAEX
planner (Bibai et al. 2010; Dréo et al. 2011), which embeds
the YAHSP planner (Vidal 2004) into an evolutionary algo-
rithm whose objective is to produce optimized plans. Opti-
mization is performed through the evolution of a population

of individuals, which represent sequences of intermediate
goals that must be reached in turn from the initial state to
the goal of the problem, by successive calls to YAHSP with
an upper bound on the number of expanded nodes. Within a
typical single run of DAEX during 30 minutes, YAHSP may
be called hundreds of thousands of times. The need for a
fast planner to embed in DAEX motivated the design of the
YAHSP2 planner. Indeed, in opposition to modern planners
such as LAMA (Richter and Westphal 2010) which require
heavy preprocessing techniques for each different problem,
even on the same domain (transformation to SAS+, land-
mark generation, landmark orderings, etc.), YAHSP does
not perform any preprocessing, computing everything on-
the-fly during search. Embedded into a wider system, search
in YAHSP for a new initial state and goal can then be per-
formed immediately, allowing fast and frequent calls.

The goals in the design of a new version of YAHSP were
(1) to extend its expressivity to cost-based and temporal
planning, and (2) to simplify its implementation with ef-
ficiency in mind. The former has been easily performed:
YAHSP2 simply does not take into account costs and du-
rations when computing a single solution, and performs a
post-deordering (Bäckström 1998) of the sequential solution
plans to produce concurrent plans (de facto forbidding tem-
porally expressive planning). The idea behind this is that the
planner embedded into DAEX should concentrate on the task
of finding a plan, working only on the combinatorial prob-
lem, the optimization being held by the evolutionary algo-
rithm. In order to fully use the time contract of 30 minutes
in the IPC, search in YAHSP2 alone is pursued when solu-
tions are found and states whose cost (plan length, sum of
action costs, or makespan after deordering) exceeds the best
cost found so far are pruned. One subtlety is that deorder-
ing for temporal planning is made during search, in order
to be able to perform that pruning. The latter goal in the de-
sign of YAHSP2, simplicity, has consisted in simplifying the
way relaxed plans and lookahead plans are computed, and
removing many other ideas introduced in the first version of
YAHSP which were not strictly needed to reach good per-
formance. Indeed, some of these ideas were useful in some
cases on the very limited number of benchmarks available
when YAHSP has been conceived, but do not reveal to be
that interesting when performing experiments on the full set
of benchmarks which is now available.

We provide in this paper a complete picture of the tech-
niques and algorithms used in the YAHSP2 planner as it has
been entered into the 7th International Planning Competi-
tion. We also show through an extensive experimental evalu-
ation that YAHSP2 improves the state-of-the-art (before the
competition!) in terms of cumulated number of solved prob-
lems and running time efficiency for finding a single plan.
We finish by a short description of YAHSP2-MT, an attempt
to benefit from multi-core processors in lookahead heuristic
search planning previously detailed in (Vidal, Bordeaux, and
Hamadi 2010).

Background
The basic STRIPS model of planning can be defined as fol-
lows. A state of the world is represented by a set of ground
atoms. A ground action a built from a set of atoms A is a
tuple 〈pr, ad, de〉 where pr ⊆ A, ad ⊆ A and de ⊆ A
represent the preconditions, add effects and del effects of a
respectively; pre(a), add(a) and del(a) denote pr, ad and
de respectively. A planning problem can be defined as a tu-
ple Π = 〈A,O, I,G〉, where A is a finite set of atoms, O
is a finite set of ground actions built from A, I ⊆ A rep-
resents the initial state, and G ⊆ A represents the goal
states. The application of an action a to a state s is possi-
ble if and only if pre(a) ⊆ s and the resulting state is de-
fined by s′ = (s \ del(a)) ∪ add(a). A solution plan is a
sequence of actions 〈a1, . . . , an〉 such that for s0 = I and
for all i ∈ {1, . . . , n}, the intermediate states defined by
si = (si−1\del(ai))∪add(ai) are such that pre(ai) ⊆ si−1
and G ⊆ sn. This simple STRIPS model has been enriched
in many ways through the evolution of PDDL. However, the
objective in the design of YAHSP2 is to consider the com-
binatorial difficulty of finding a solution plan only, and thus
we stick to the basic STRIPS model. Action costs and dura-
tions are simply ignored, a temporal plan being obtained by
a deordering of a valid sequential plan.

The lookahead strategy implemented in the first version
of YAHSP has been described in (Vidal 2004). Briefly, the
idea is to produce in polynomial time a sequence of actions
that hopefully can bring search closer to a goal state, and
to introduce this state in the open list of a best-first search
algorithm just as if it was a normal state. To this end, re-
laxed plans (Hoffmann and Nebel 2001) which are often of
high quality are used in YAHSP to compute such a sequence.
This is performed by a simple algorithm which tries to ap-
ply as much actions as possible from a relaxed plan to the
state for which it has been computed. When no more action
can be applied, a simple repair strategy tries to replace an
action of the relaxed plan by another one, taken from the
global set of actions, which can be applied and produces
an unsatisfied precondition of another action in the relaxed
plan. The idea of producing lookahead plans and states has
been recently enriched, for example by the computation of
low-conflicts relaxed plans and a repair strategy based on
insertion instead of replacement (Baier and Botea 2009), or
by computing lookahead plans in a different way than ex-
tracting them from relaxed plans, using sophisticated tech-
niques such as landmarks and causal chains (Lipovetzky and
Geffner 2011).

YAHSP2: The Algorithms
In the design of the second version of the YAHSP planner,
we took the opposite direction: instead of augmenting the
techniques and components used inside the planner, we sim-
plified its design and removed many unnecessary steps, fol-
lowing in that the KISS principle: “Keep It Simple, Stupid”.
The motivations behind this work were first to implement a
planner that could be easy to maintain and to embed into a
wider system such as DAEX, and second to better under-
stand what makes YAHSP an efficient planner. Indeed, if
some ideas were sometimes useful on the small set of bench-
marks available when YAHSP was written, experiments on
the much larger set of benchmarks now available changes
the picture. The implementation, with respect to the version
described in (Vidal 2004), has been modified and simplified
in the following main ways:

• The relaxed plans used to compute lookahead plans are
not any more computed from relaxed planning graphs. We
found more convenient and easy to extract relaxed plans
directly from the computation of a critical path heuristic
such as hadd or h1: all what is needed is a cost associated
to each action. This has the advantage to avoid the need
of complex data structures to build planning graphs, and
considerably simplifies the algorithm.

• The heuristic value of states is no longer the length of re-
laxed plans, but the hadd value of the goal set. Among
several variants that we have experimented, we found that
using hadd for both evaluating states and extracting looka-
head plans was a good strategy.

• Some refinements introduced in YAHSP are abandoned,
due to their lack of robustness on the whole set of bench-
marks. Among them are helpful actions first introduced in
FF and used in YAHSP to define a lexicographic order on
the nodes to be expanded (always preferring nodes com-
ing from the application of an helpful action). Although
some recent experiments show that they may be of in-
terest (Richter and Helmert 2009), their use in YAHSP
finally does not reveal to be that interesting. Also, goal-
preferred actions (actions that do not delete a goal) which
were used to compute twice a relaxed planning graph: the
first one with goal-preferred actions only, and the second
one with all actions of the problem in case of a failure in
reaching the goals, are not used any more.

The simplified design of YAHSP2 allows us to completely
describe the algorithms, which are implemented in around
450 lines of C code. The prerequisites are a parsing and
grounding process (without any complex preprocessing such
as mutex, landmarks, etc.), and a few helpers to easily access
some data (in particular, the list of actions which consume,
add and delete an atom are precomputed). States are imple-
mented with bit vectors such that checking the presence of
an atom in a state is performed in constant time. The open
and closed lists are represented with red-black trees. Nodes
of the search tree are tuples n = 〈s, p, t, l, f, a〉 where s is
a state, p is the parent node of n, t is the sequence of ac-
tions (a single action for a classical transition, a sequence
for lookahead states) yielding n from p, l is the length of

Algorithm 1: plan-search
input : a planning problem Π = 〈A,O, I,G〉 and a weight

ω for the heuristic function
output : a plan if search succeeds, ⊥ otherwise

open← closed← ∅
create a new node n:

n.state← I
n.parent← ⊥
n.steps← 〈〉
n.length← 0

n′ ← compute-node(Π, ω, n, open, closed)
if n′ 6= ⊥ then return extract-plan(n′)
else

while open 6= ∅ do
n← arg minn∈open n.heuristic

open← open \ {n}
foreach a ∈ n.applicable do

create a new node n′:
n′.state← (n.state \ del(a)) ∪ add(a)
n′.parent← n
n′.steps← 〈a〉
n′.length← n.length + 1

n′′ ← compute-node(Π, ω, n′, open, closed)
if n′′ 6= ⊥ then return extract-plan(n′′)

return ⊥

the plan reaching n from the initial state, f is the numerical
heuristic evaluation of s and a is the set of actions applicable
in s. The notations n.state, n.parent, n.steps, n.length,
n.heuristic and n.applicable refer to s, p, t, l, f and a re-
spectively. The operator ⊕ concatenates two sequences or a
sequence and a set (in any order of its elements).

Algorithm 1 (plan-search) constitutes the core of the
best-first search algorithm (a weighted-A* here). The first
call to compute-node allows to find a solution to the prob-
lem without search, by recursive calls to the lookahead pro-
cess. Nodes are extracted from the open list following their
heuristic evaluation and are expanded with the applicable ac-
tions (already computed and stored in nodes inserted into the
open list), and a solution plan is returned as soon as possible.
In the version submitted to the 7th IPC, search is pursued in
order to improve the solution, with pruning of partial plans
whose quality is lower than that of the best plan found so far.
Also, the weight ω is set to 3.

Algorithm 2 (compute-node) first performs duplicate
state detection, even if the quality (length, cost or makespan)
of the plan which yields such a state is improved; as we de-
liberately avoid optimization. It then computes the heuris-
tic, checks if the goal is obtained or contrarily cannot be
reached, and updates the node with the heuristic and the ap-
plicable actions given by compute-hadd. The node is then
stored in the open list and a lookahead state/plan is com-
puted by a call to lookahead. A new node corresponding
to the lookahead state is then created and compute-node is
recursively called. Recursion is stopped when a goal state, a
duplicate state or a dead-end state is reached.

Algorithm 2: compute-node
input : a planning problem Π = 〈A,O, I,G〉, a weight ω

for the heuristic function, a node n, the open and
closed lists

output : a goal node if search succeeds, ⊥ otherwise; open
and closed are updated

if ∃n′ ∈ closed |n′.state = n.state then return ⊥
else

closed← closed ∪ {n}
〈cost, app〉 ← compute-hadd(Π, n.state)
gcost← Σg∈G cost[g]
if gcost = 0 then return n
else if gcost =∞ then return ⊥
else

n.applicable← app
n.heuristic← n.length + ω × gcost
open← open ∪ {n}
〈state, plan〉 ← lookahead(Π, n.state, cost)
create a new node n′:

n′.state← state
n′.parent← n
n′.steps← plan
n′.length← n.length + length(plan)

return compute-node(Π, ω, n′, open, closed)

Algorithm 3 (compute-hadd) computes hadd and returns
a vector of costs for all atoms and actions, as well as ac-
tions applicable in the state for which hadd is computed ob-
tained as a side-effect. Several ways are possible to compute
hadd, e.g. by mutually recursive functions triggered by the
updates; the one shown here has the advantage to be very
simple and efficient, even if it looks laborious at first sight
because of multiple iterations over the whole set of actions.

Algorithm 4 (lookahead) computes a lookahead
state/plan from a relaxed plan given by a call to extract-
relaxed-plan. Once a first applicable action of the relaxed
plan is encountered, it is appended to the lookahead plan and
the lookahead state is updated. A second applicable action
is then sought from the beginning of the relaxed plan, and
so on. When no applicable action is found, a repair strat-
egy tries to find an applicable action of minimum cost from
the whole set of actions, in order to replace an action of the
relaxed plan which produces an unsatisfied precondition of
another action of the relaxed plan, and the process loops.

Algorithm 5 (extract-relaxed-plan) computes a re-
laxed plan from a vector of action costs. A sequence of
goals to produce is maintained, starting from the goals of
the problem. The first one is extracted, and an action which
produces it with the lowest cost is selected and stored in the
relaxed plan. Its preconditions are appended to the sequence
of goals, and the process loops until the sequence of goals
is empty. An atom already satisfied, i.e. produced by an ac-
tion of the relaxed plan, is not considered twice. The relaxed
plan is finally sorted before being returned, by increasing
costs first, and for equal costs by trying to order first an ac-
tion which does not delete a precondition of the next action.

Algorithm 3: compute-hadd
input : a planning problem Π = 〈A,O, I,G〉 and a state s
output : the vector of action and atom costs and the set of

actions applicable in s

foreach a ∈ O do
cost[a]←∞
update[a]← (pre(a) = ∅)

foreach p ∈ A do
if p ∈ s then

cost[p]← 0
foreach a ∈ O | p ∈ pre(a) do

update[a]← true

else cost[p]←∞
app← ∅
loop← true
while loop do

loop← false
foreach a ∈ O do

if update[a] then
update[a]← false
c← Σp∈pre(a) cost[p]
if c < cost[a] then

cost[a]← c
if c = 0 then app← app ∪ {a}
foreach p ∈ add(a) do

if c + 1 < cost[p] then
cost[p]← c + 1
foreach a ∈ O | p ∈ pre(a) do

loop← true
update[a]← true

return 〈cost, app〉

Experiments
We performed extensive experiments on the whole set of
benchmarks, from the 1st to the 6th IPC, that YAHSP2 can
handle (i.e. without ADL and numerical domains). The ob-
jective of the experiments is to demonstrate that a simple
heuristic search planner with a lookahead strategy is com-
petitive with the state-of-the-art in terms of number of solved
problems and running time. All experiments are performed
on an Intel Xeon X5670 running at 2.93GHz with 4GB of
memory and a timeout of 30 minutes.

Sequential Planning
Seven planners are compared on 1534 sequential planning
problems. Costs have been removed from domains of the
6th IPC, in order to run planners that do not accept them
such as FF and LPG-td. The planners are FF (Hoffmann and
Nebel 2001), LAMA (Richter and Westphal 2010), LPG-td
(Gerevini, Saetti, and Serina 2003), Mp (Rintanen 2010),
SGPlan6 (Chen, Wah, and Hsu 2006), YAHSP version 1
with two different settings: Y1lbfs similar to YAHSP2 and
Y1lobfs with the “optimistic” strategy (i.e. expanding first
nodes coming from the application of an helpful action), and
YAHSP2. Most of these planners have been awarded at pre-

Algorithm 4: lookahead
input : a planning problem Π = 〈A,O, I,G〉, a state s, and

a vector of action costs cost
output : a lookahead state and a lookahead plan

plan← 〈〉
rplan← extract-relaxed-plan(Π, s, cost)

// with rplan = 〈a1, . . . , an〉
loop← true
while loop do

loop← false
if ∃ i ∈ {1, . . . , n} | pre(ai) ⊆ s then

loop← true
i← min(i ∈ {1, . . . , n} | pre(ai) ⊆ s)
s← (s \ del(ai)) ∪ add(ai)
plan← plan⊕ 〈ai〉
rplan← 〈a1 . . . , ai−1, ai+1, . . . , an〉

else
i← j ← 1
while ¬loop ∧ i ≤ n do

while ¬loop ∧ j ≤ n do
if i 6= j ∧ add(ai) ∩ pre(aj) 6= ∅ then

candidates← {a ∈ O | pre(a) ⊆ s
∧ add(ai) ∩ pre(aj) ∩ add(a) 6= ∅}

if candidates 6= ∅ then
loop← true
a← arg mina∈candidates cost[a]
rplan← 〈a1 . . . , ai−1, a, ai+1,

. . . , an〉

j ← j + 1

i← i + 1

return 〈s, plan〉

Algorithm 5: extract-relaxed-plan
input : a planning problem Π = 〈A,O, I,G〉, a state s, and

a vector of action costs cost
output : a relaxed plan for Π

rplan← 〈〉
goals← 〈g | g ∈ G〉
satisfied← s
while goals 6= ∅ do

g ← pop-first(goals)
if g /∈ satisfied then

satisfied← satisfied ∪ {g}
a← arg mina∈O | g∈add(a) cost[a]

if a /∈ rplan then
rplan← rplan⊕ 〈a〉
G← G⊕ pre(a)

sort rplan = 〈a1, . . . , an〉: ∀ai, aj ∈ rplan | i < j,
cost[ai] < cost[aj] ∨ (cost[ai] = cost[aj] ∧
(del(ai) ∩ pre(aj) = ∅ if possible))

return rplan

vious IPCs, except the recent Mp and YAHSP2 planners. We
included Mp as it is the first SAT-based planner competitive
with other types of satisficing planners (Rintanen 2010).

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Y
A

H
S

P
2
 (

C
P

U
 t
im

e
 i
n
 s

e
c
.)

LAMA (CPU time in sec.)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Y
A

H
S

P
2
 (

C
P

U
 t
im

e
 i
n
 s

e
c
.)

Mp (CPU time in sec.)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Y
A

H
S

P
2
 (

C
P

U
 t
im

e
 i
n
 s

e
c
.)

SGPlan6 (CPU time in sec.)

Figure 3: Comparison of the total running time for the three best sequential planners (except YAHSP1) versus YAHSP2.

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0.1 1 10 100 1000

n
u
m

b
e
r

o
f
s
o
lv

e
d
 p

ro
b
le

m
s

CPU time (sec.)

FF
LAMA

LPG-td
Mp

SGPlan6
Y1-lbfs

Y1-lobfs
YAHSP2

Figure 1: Cumulated number of solved problems for sequen-
tial planners in function of the total running time.

 400

 600

 800

 1000

 1200

 1400

 0.01 0.1 1 10 100 1000

n
u
m

b
e
r

o
f
s
o
lv

e
d
 p

ro
b
le

m
s

CPU time (sec.)

LAMA
Y1-lbfs

Y1-lobfs
YAHSP2

Figure 2: Cumulated number of solved problems in function
of the search time for the four best sequential planners.

Figure 1 shows the cumulated number of solved prob-
lems in function of the total running time. For each CPU

time t on the x axis, the corresponding value on the y axis
gives the number of problems solved in under t seconds.
YAHSP2 and Y1lbfs clearly outperform the other planners.
Y1lbfs is a bit faster than YAHSP2 for problems solved in
under 10 seconds, but YAHSP2 finally solves more prob-
lems. This mainly comes from the parser of YAHSP1, which
has been better designed and is much more efficient than
that of YAHSP2. The comparison with Y1lobfs clearly con-
firms that giving priority to nodes coming from helpful ac-
tions was finally not a so good idea, in conjunction with the
lookahead strategy. LAMA nearly reaches YAHSP2, solv-
ing 1405 problems (91.6%) with respect to 1444 (94.1%)
for YAHSP2, but is significantly slower than YAHSP2. One
reason is that it performs a heavy preprocessing step in or-
der to translate to SAS+ and to compute landmarks, but Fig-
ure 2 which compares the search time only of the four best
planners shows that search in LAMA is less efficient than in
YAHSP2 and Y1lbfs. It should be mentioned that although
(Rintanen 2010) shows that Mp outperforms LAMA, this
is probably due to the 300 seconds timeout which clearly
disadvantages LAMA: on small runtimes it is the slowest
among all planners compared here, but finally is in the top
three. Figure 3 depicts scatter plot comparisons of the run-
ning time between YAHSP2 and the three other best plan-
ners (except YAHSP1), which are LAMA, Mp and SGPlan6.
YAHSP2 very often outperforms them by several orders of
magnitude. Finally, Table 1 shows the detail of the number
of solved problems, over each IPC and each domain.

Temporal Planning
Four planners are compared on 664 temporal planning prob-
lems. The planners are LPG-td, SGPlan6, TFD (Eyerich,
Mattmüller, and Röger 2009) and YAHSP2. The first three
ones have been awarded at previous IPCs.

Figure 4 shows the cumulated number of solved prob-
lems in function of the total running time. YAHSP2 outper-
forms all planners, solving 594 problems (89.5%) against
434 problems (65.4%) for SGPlan6, the second best plan-
ner. SGPlan6 outperforms LPG-td that solves 403 problems
(60.7%), which itself outperforms TFD that solves 287 prob-
lems (43.2%). Figure 5 depicts scatter plot comparisons of

IPC domain #pbs
#solved (difference with best)

FF LAMA LPG-td Mp SGPlan6 Y1lbfs Y1lobfs YAHSP2

1

grid 5 5 5 5 4 (1) 5 5 5 5
gripper 20 20 20 20 20 20 20 20 20
logistics 35 35 35 29 (6) 22 (13) 35 35 35 31 (4)
movie 30 30 30 30 30 30 30 30 30
mprime 35 34 (1) 35 35 35 33 (2) 35 35 35
mystery 30 18 (4) 22 20 (2) 18 (4) 19 (3) 18 (4) 20 (2) 22
total

155
142 (5) 147 139 (8) 129 (18) 142 (5) 143 (4) 145 (2) 143 (4)

% solved 91.6% 94.8% 89.7% 83.2% 91.6% 92.3% 93.5% 92.3%

2

blocks 60 48 (12) 55 (5) 60 52 (8) 39 (21) 42 (18) 41 (19) 47 (13)
miconic 150 150 150 150 150 150 150 150 150
freecell 60 60 58 (2) 12 (48) 40 (20) 59 (1) 60 60 60
logistics 198 197 (1) 196 (2) 198 178 (20) 198 198 198 198
total

468
455 (4) 459 420 (39) 420 (39) 446 (13) 450 (9) 449 (10) 455 (4)

% solved 97.2% 98.1% 89.7% 89.7% 95.3% 96.2% 95.9% 97.2%

3

depots 22 22 20 (2) 22 22 22 19 (3) 20 (2) 22
driverlog 20 16 (4) 20 20 20 17 (3) 20 20 19 (1)
freecell 20 20 20 3 (17) 11 (9) 19 (1) 20 20 20
rovers 20 20 20 20 20 20 20 20 20
satellite 20 20 20 20 20 20 20 20 20
zenotravel 20 20 20 20 20 20 20 20 20
total

122
118 (3) 120 (1) 105 (16) 113 (8) 118 (3) 119 (2) 120 (1) 121

% solved 96.7% 98.4% 86.1% 92.6% 96.7% 97.5% 98.4% 99.2%

4

airport 50 30 (16) 38 (8) 45 (1) 46 43 (3) 39 (7) 39 (7) 45 (1)
pipesworld-notankage 50 36 (14) 44 (6) 43 (7) 36 (14) 0 (50) 50 48 (2) 44 (6)
pipesworld-tankage 50 22 (27) 39 (10) 26 (23) 24 (25) 10 (39) 49 21 (28) 43 (6)
promela-optical-telegraph 14 2 (12) 2 (12) 1 (13) 14 14 13 (1) 13 (1) 6 (8)
promela-philosophers 29 14 (15) 13 (16) 2 (27) 29 29 29 5 (24) 29
psr-small 50 42 (8) 50 48 (2) 50 50 50 47 (3) 50
satellite-strips 36 36 34 (2) 36 32 (4) 35 (1) 36 36 36
total

279
182 (84) 220 (46) 201 (65) 231 (35) 181 (85) 266 209 (57) 253 (13)

% solved 65.2% 78.9% 72.0% 82.8% 64.9% 95.3% 74.9% 90.7%

5

openstacks 30 7 (23) 30 22 (8) 20 (10) 23 (7) 30 30 30
pathways 30 10 (20) 28 (2) 30 30 30 20 (10) 26 (4) 29 (1)
pipesworld 50 6 (44) 40 (10) 20 (30) 23 (27) 17 (33) 50 22 (28) 43 (7)
rovers 40 16 (24) 40 30 (10) 40 30 (10) 40 40 40
storage 30 18 (12) 19 (11) 30 30 30 25 (5) 21 (9) 18 (12)
tpp 30 12 (18) 30 15 (15) 30 20 (10) 30 30 30
trucks 30 4 (26) 13 (17) 5 (25) 30 6 (24) 11 (19) 14 (16) 16 (14)
total

240
73 (133) 200 (6) 152 (54) 203 (3) 156 (50) 206 183 (23) 206

% solved 30.4% 83.3% 63.3% 84.6% 65.0% 85.8% 76.2% 85.8%

6

cybersec 30 0 (30) 30 6 (24) 6 (24) 6 (24) 12 (18) 10 (20) 30
elevators 30 30 30 25 (5) 30 30 30 30 30
openstacks 30 30 30 30 15 (15) 27 (3) 30 30 30
parcprinter 30 30 25 (5) 29 (1) 30 30 30 26 (4) 30
pegsol 30 30 29 (1) 11 (19) 30 12 (18) 30 30 30
scanalyzer 30 30 30 24 (6) 28 (2) 29 (1) 28 (2) 26 (4) 28 (2)
sokoban 30 27 (2) 26 (3) 0 (29) 6 (23) 8 (21) 24 (5) 25 (4) 29
transport 30 29 (1) 30 20 (10) 23 (7) 30 30 30 30
woodworking 30 17 (13) 29 (1) 16 (14) 30 30 29 (1) 26 (4) 29 (1)
total

270
223 (43) 259 (7) 161 (105) 198 (68) 202 (64) 243 (23) 233 (33) 266

% solved 82.6% 95.9% 59.6% 73.3% 74.8% 90.0% 86.3% 98.5%
total

1534
1193 (251) 1405 (39) 1178 (266) 1294 (150) 1245 (199) 1427 (17) 1339 (105) 1444

% solved 77.8% 91.6% 76.8% 84.4% 81.2% 93.0% 87.3% 94.1%

Table 1: Number and percentage of solved problems in all sequential domains of the IPCs from 1998 to 2008. Numbers in bold
indicate the best results and numbers in parenthesis indicate the number of unsolved problems with respect to the best result.

the running time between YAHSP2 and the three other plan-
ners, and confirms that YAHSP2 has much better perfor-
mances. The detail of the number of solved problems over
each IPC and each domain can be found in Table 2.

YAHSP2-MT: A Multi-Threaded Planner
We now briefly describe YAHSP2-MT, a multi-threaded ver-
sion of YAHSP2 which aims at benefiting from the com-

puting power offered by multi-core processors with shared
memory. A more detailed description can be found in (Vidal,
Bordeaux, and Hamadi 2010).

The key idea is similar to that of KBFS (Felner, Kraus,
and Korf 2003): always expanding first the best node of the
open list, giving a maximum trust to the heuristic, may lead
search to unpromising parts of the search space; while better
parts could have been reached by expanding nodes ranked

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Y
A

H
S

P
2
 (

C
P

U
 t
im

e
 i
n
 s

e
c
.)

LPG-td (CPU time in sec.)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Y
A

H
S

P
2
 (

C
P

U
 t
im

e
 i
n
 s

e
c
.)

SGPlan6 (CPU time in sec.)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Y
A

H
S

P
2
 (

C
P

U
 t
im

e
 i
n
 s

e
c
.)

TFD (CPU time in sec.)

Figure 5: Comparison of the total running time for all temporal planners versus YAHSP2.

 0

 100

 200

 300

 400

 500

 600

 0.01 0.1 1 10 100 1000

n
u
m

b
e
r

o
f
s
o
lv

e
d
 p

ro
b
le

m
s

CPU time (sec.)

LPG-td
SGPlan6

TFD
YAHSP2

Figure 4: Cumulated number of solved problems for tempo-
ral planners.

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Y
A

H
S

P
2
-M

T
 (

W
C

 t
im

e
 i
n
 s

e
c
.)

YAHSP2 (WC time in sec.)

Figure 6: Comparison between the sequential version and
the multi-threaded version with restarts of YAHSP2.

lower by the heuristic. KBFS expands the K best nodes of
the open list, and then adds all their children to the open list.
With the goal of avoiding as much as possible modifications
to the existing YAHSP2 code, we simply start K threads

that share the same open and closed list, expanding nodes in
a concurrent way. This can be made very easily by inserting
OpenMP directives between carefully selected lines of code.
This simple strategy is used in conjunction with restarts trig-
gered by limits on the number of evaluated nodes, where
each restart increases the number of active threads. We also
used a slightly different strategy than (Vidal, Bordeaux, and
Hamadi 2010): two distinct open and closed lists are each
attacked by half of the threads. The first half behave classi-
cally, whereas the second half runs an incomplete algorithm,
pruning nodes which are obtained with the same number of
actions and have the same heuristic value. Figure 6 com-
pares the wall-clock time between YAHSP2 and YAHSP2-
MT on a 12-core machine with 24GB of memory and a wall-
clock timeout of 30 minutes, on the full set of 2198 prob-
lems. The restart strategy starts from 1 thread and goes up to
384 threads (128 for the version submitted to the 7th IPC).
YAHSP2 solves 2038 problems (92.7%), while YAHSP2-
MT solves 2082 problems (94.7%). We can see that very of-
ten, the multi-threaded version offers super-linear speedups.
Furthermore, much less problems are solved faster by the
sequential version than in previous tests (Vidal, Bordeaux,
and Hamadi 2010), probably because a 4-core machine was
used.

Conclusion
We described in this paper the new version of YAHSP, a
heuristic search planner that uses a lookahead strategy. Its
design has been led by an objective of simplicity, both in
the algorithms and the source code, implying many changes
with respect to the first version. The resulting planner out-
performs state-of-the-art sequential and temporal planners
in terms of cumulated number of solved problems and run-
ning time. We deliberately avoided analyzing plan quality,
as the goal was to produce a fast planner easily embeddable
into a wider system such as the DAEX planner. Thus, we
expect YAHSP2 to be outperformed by at least DAEYAHSP
at the 7th IPC. We also briefly described YAHSP2-MT, the
multi-threaded version of YAHSP2 that aims at exploiting
multi-core processors, which very often obtains super-linear
speedups in comparison with the sequential version.

IPC domain #pbs
#solved (difference with best)

LPG-td SGPlan6 TFD YAHSP2

3

depots 22 22 21 (1) 2 (20) 22
driverlog 20 20 18 (2) 10 (10) 19 (1)
rovers 20 20 20 19 (1) 20
satellite 20 20 20 20 20
zenotravel 20 20 20 14 (6) 20
total

102
102 99 (3) 65 (37) 101 (1)

% solved 100.0% 97.1% 63.7% 99.0%

4

airport 50 42 (3) 43 (2) 10 (35) 45
airport-timewindows 50 0 (46) 0 (46) 6 (40) 46
pipesworld-notankage-deadlines 30 0 (30) 30 11 (19) 30
pipesworld-notankage 50 43 (1) 0 (44) 20 (24) 44
pipesworld-tankage 50 28 (15) 10 (33) 6 (37) 43
satellite 36 36 35 (1) 7 (29) 36
satellite-timewindows 36 0 (21) 0 (21) 3 (18) 21
total

302
149 (116) 118 (147) 63 (202) 265

% solved 49.3% 39.1% 20.9% 87.7%

5
openstacks 20 18 (2) 20 4 (16) 20
storage 30 30 30 8 (22) 19 (11)
trucks 30 24 (6) 24 (6) 18 (12) 30
total

80
72 (2) 74 30 (44) 69 (5)

% solved 90.0% 92.5% 37.5% 86.2%

6

crewplanning 30 11 (19) 30 29 (1) 30
elevators 30 0 (30) 30 17 (13) 30
openstacks 30 30 30 30 30
parcprinter 30 20 (5) 25 13 (12) 18 (7)
pegsol 30 17 (13) 18 (12) 28 (2) 30
sokoban 30 2 (19) 10 (11) 12 (9) 21
total

180
80 (79) 143 (16) 129 (30) 159

% solved 44.4% 79.4% 71.7% 88.3%
total

664
403 (191) 434 (160) 287 (307) 594

% solved 60.7% 65.4% 43.2% 89.5%

Table 2: Number and percentage of solved problems in all temporal domains of the IPCs from 2002 to 2008. Numbers in bold
indicate the best results and numbers in parenthesis indicate the number of unsolved problems with respect to the best result.

Acknowledgments
This work has been supported by the French National Re-
search Agency (ANR) through COSINUS program (project
DESCARWIN noANR-09-COSI-002). Many thanks to my
colleagues of the DAEYAHSP team for their enthusiasm
and numerous insightful discussions: Johann Dréo, Pierre
Savéant and Marc Schoenauer; as well as to Lucas Bordeaux
and Youssef Hamadi for their multi-core expertise.

References
Bäckström, C. 1998. Computational aspects of reordering plans.
JAIR 9:99–137.
Baier, J. A., and Botea, A. 2009. Improving planning performance
using low-conflict relaxed plans. In Proc. ICAPS, 10–17.
Bibai, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010. An evo-
lutionary metaheuristic based on state decomposition for domain-
independent satisficing planning. In Proc. ICAPS, 18–25.
Chen, Y.; Wah, B. W.; and Hsu, C.-W. 2006. Temporal planning
using subgoal partitioning and resolution in SGPlan. JAIR 26:323–
369.
Dréo, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2011. Divide-
and-evolve: the marriage of descartes and darwin. In Booklet of the
7th IPC.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the context-
enhanced additive heuristic for temporal and numeric planning. In
Proc. ICAPS, 130–137.

Felner, A.; Kraus, S.; and Korf, R. E. 2003. KBFS: K-best-first
search. AMAI 39(1-2):19–39.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning through
stochastic local search and temporal action graphs in LPG. JAIR
20:239–290.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans with
carefully designed probes. In Proc. ICAPS.
Richter, S., and Helmert, M. 2009. Preferred operators and deferred
evaluation in satisficing planning. In Proc. ICAPS, 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. JAIR 39:127–177.
Rintanen, J. 2010. Heuristic planning with sat: Beyond uninformed
depth-first search. In Proc. Australasian Conf. on AI, 415–424.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010. Incre-
mental plan aggregation for generating policies in MDPs. In Proc.
AAMAS, 1231–1238.
Vidal, V.; Bordeaux, L.; and Hamadi, Y. 2010. Adaptive k-parallel
best-first search: A simple but efficient algorithm for multi-core
domain-independent planning. In Proc. SOCS, 100–107.
Vidal, V. 2004. A lookahead strategy for heuristic search planning.
In Proc. ICAPS, 150–160.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A baseline
for probabilistic planning. In Proc. ICAPS, 352–359.

