
The YAHSP planning system:
Forward heuristic search with lookahead plans analysis

Vincent Vidal
CRIL - Université d’Artois
rue de l’Université - SP 16

62307 Lens, France
vidal@cril.univ-artois.fr

Introduction
Planning as heuristic search has proven to be a success-
ful framework for STRIPS non-optimal planning, since the
advent of planners capable to outperform in most of the
classical benchmarks the previous state-of-the-art planners
Graphplan (Blum & Furst 1997), Blackbox (Kautz & Sel-
man 1999), IPP (Koehler et al. 1997), STAN (Long &
Fox 1999), LCGP (Cayrol, Régnier, & Vidal 2001), . . . Al-
though these planners (except LCGP) compute optimal par-
allel plans, which is not exactly the same purpose as non-
optimal planning, they also offer no optimality guarantee
concerning plan length in number of actions.

The planning as heuristic search framework indeed lead to
some of the most efficient planners, as demonstrated in the
two previous editions of the International Planning Compe-
tition with planners such as HSP2 (Bonet & Geffner 2001),
FF (Hoffmann & Nebel 2001) and AltAlt (Nguyen, Kamb-
hampati, & Nigenda 2002). FF was in particular awarded
for outstanding performance at the 2nd International Plan-
ning Competition and was generally the top performer plan-
ner in the STRIPS track of the 3rd International Planning
Competition.

The YAHSP planning system (“Yet Another Heuristic
Search Planner”, more details in (Vidal 2004)) extends a
technique introduced in the FF planning system (Hoffmann
& Nebel 2001) for calculating the heuristic, based on the ex-
traction of a solution from a planning graph computed for
the relaxed problem obtained by ignoring deletes of actions.
It can be performed in polynomial time and space, and the
length in number of actions of the relaxed plan extracted
from the planning graph represents the heuristic value of the
evaluated state. This heuristic is used in a forward-chaining
search algorithm to evaluate each encountered state.

We introduce a novel way for extracting information from
the computation of the heuristic, by considering the high
quality of the relaxed plans extracted by the heuristic func-
tion in numerous domains. Indeed, the beginning of these
plans can often be extended to solution plans of the initial
problem, and there are often a lot of other actions from these
plans that can effectively be used in a solution plan. YAHSP
uses an algorithm for combining some actions from each re-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

laxed plan, in order to find the beginning of a valid plan that
can lead to a reachable state. Thanks to the quality of the
extracted relaxed plans, these states will frequently bring us
closer to a solution state. The lookahead states thus calcu-
lated are then added to the list of nodes that can be chosen to
be expanded by increasing order of the numerical value of
the heuristic. The best strategy we (empirically) found is to
use as much actions as possible from each relaxed plan and
to perform the computation of lookahead states as often as
possible.

This lookahead strategy can be used in different search
algorithms. We propose a modification of a classical best-
first search algorithm in a way that preserves completeness.
Indeed, it simply consists in augmenting the list of nodes
to be expanded (the open list) with some new nodes com-
puted by the lookahead algorithm. The branching factor is
slightly increased, but the performances are generally better
and completeness is not affected.

Our experimental evaluation of the use of this lookahead
strategy in a complete best-first search algorithm demon-
strates that in numerous planning benchmark domains, the
improvement of the performance in terms of running time
and size of problems that can be handled have been drasti-
cally improved (cf. (Vidal 2004)).

Computing and using
lookahead states and plans

A state is a finite set of ground atomic formulas (i.e. without
any variable symbol) also called fluents. Actions are classi-
cal STRIPS actions. Let a be an action; Prec(a), Add(a)
and Del(a) are fluent sets and respectively denote the pre-
conditions, add effects, and del effects of a. A planning
problem is a triple 〈O, I,G〉 where O is a set of actions, I
is a set of fluents denoting the initial state and G is a set of
fluents denoting the goal. A plan is a sequence of actions.
The application of an action a on a state S (noted S ↑ a) is
possible if Prec(a) ⊆ S and the resulting state is defined by
S ↑ a = (S \ Del(a)) ∪ Add(a). Let P = 〈a1, a2, . . . , an〉
be a plan. P is valid for a state S if a1 is applicable on S
and leads to a state S1, a2 is applicable on S1 and leads to
S2, . . . , an is applicable on Sn−1 and leads to Sn. In that
case, Sn is said to be reachable from S for P and P is a
solution plan if G ⊆ Sn. First(P ) and Rest(P ) respec-



tively denote the first action of P (a1 here) and P without
the first action (〈a2, . . . , an〉 here). Let P ′ = 〈b1, . . . , bm〉
be another plan. The concatenation of P and P ′ (denoted by
P ⊕ P ′) is defined by P ⊕ P ′ = 〈a1, . . . , an, b1, . . . , bm〉.

Principle and use of lookahead plans
In classical forward state-space search algorithms, a node in
the search graph represents a planning state and an arc start-
ing from that node represents the application of one action to
this state, that leads to a new state. In order to ensure com-
pleteness, all actions that can be applied to one state must
be considered. The order in which these states will then be
considered for development depends on the overall search
strategy: depth-first, breadth-first, best-first. . .

Let us now imagine that for each evaluated state S, we
knew a valid plan P that could be applied to S and would
lead to a state closer to the goal than the direct descendants
of S (or estimated as such, thanks to some heuristic evalua-
tion). It could then be interesting to apply P to S, and use
the resulting state S′ as a new node in the search. This state
could be simply considered as a new descendant of S.

We have then two kinds of arcs in the search graph: the
ones that come from the direct application of an action to a
state, and the ones that come from the application of a valid
plan to a state S and lead to a state S ′ reachable from S. We
will call such states lookahead states, as they are computed
by the application of a plan to a node S but are considered in
the search tree as direct descendants of S. Nodes created for
lookahead states will be called lookahead nodes. Plans la-
beling arcs that lead to lookahead nodes will be called looka-
head plans. Once a goal state is found, the solution plan is
then the concatenation of single actions for arcs leading to
classical nodes and lookahead plans for the arcs leading to
lookahead nodes.

Completeness and correctness of search algorithms are
preserved by this process, because no information is lost:
all actions that can be applied to a state are still considered,
and because the nodes that are added by lookahead plans are
reachable from the states they are connected to. The only
modification is the addition of new nodes, corresponding to
states that can be reached from the initial state.

Computing relaxed plans
The determination of an heuristic value for each state as
performed in the FF planner offers a way to compute such
lookahead plans. FF creates a planning graph for each en-
countered state S, using the relaxed problem obtained by
ignoring deletes of actions and using S as initial state. A
relaxed plan is then extracted in polynomial time and space
from this planning graph. The length in number of actions
of the relaxed plan corresponds to the heuristic evaluation
of the state for which it is calculated. Generally, the relaxed
plan for a state S is not valid for S, as deletes of actions
are ignored during its computation: negative interactions be-
tween actions are not considered, so an action can delete a
goal or a fluent needed as a precondition by some actions
that follow it in the relaxed plan. But actions of the relaxed
plans are used because they produce fluents that can be in-
teresting to obtain the goals, so some actions of these plans

can possibly be interesting to compute the solution plan of
the problem. In numerous benchmark domains, we can ob-
serve that relaxed plans have a very good quality because
they contain a lot of actions that belong to solution plans.

The computation of relaxed plans in YAHSP works
closely as in FF, with one notable difference which holds in
the way actions are added to the relaxed plan. In FF, actions
are arranged in the order they get selected. We found use-
ful to use the following algorithm. Let a be an action, and
〈a1, a2, . . . , an〉 be a relaxed plan. All actions in the relaxed
plan are chosen in order to produce a subgoal in the relaxed
planning graph at a given level, which is either a problem
goal or a precondition of an action of the relaxed plan. a is
ordered after a1 iff:

• the level of the subgoal a was selected to satisfy is strictly
greater than the level of the subgoal a1 was selected to
satisfy, or

• these levels are equal, and either a deletes a precondition
of a1 or a1 does not delete a precondition of a.

In that case, the same process continues between a and a2,
and so on with all actions in the plan. Otherwise, a is placed
before a1.

Computing lookahead plans
The algorithm for computing lookahead plans (cf. Figure 1)
takes as input the current planning state S, and the relaxed
plan RP that has been computed by the heuristic function.
Several strategies can be imagined: searching plans with a
limited number of actions, returning several possible plans,
etc. From our experiments, the best strategy we found is to
search one plan, containing as most actions as possible from
the relaxed plan. One improvement we made to that process
is the following. When no action of RP can be applied, we
replace one of its action a by an action a′ taken from the
global set of actions O, such that a′:

• does not belong to RP ,

• is applicable in the current lookahead state S ′,

• produces at least one add effect f of a such that f is a pre-
condition of another action in RP and f does not belong
to S′.

At first, we enter in a loop that stops if no action can be
found or all actions of RP have been used. Inside this loop,
there are two parts: one for selecting actions from RP , and
another one for replacing an action of RP by another action
in case of failure in the first part.

In the first part, actions of RP are observed in turn, in the
order they are present in the sequence. Each time an action a
is applicable in S, we add a to the end of the lookahead plan
and update S by applying a to it (removing deletes of a and
adding its add effects). Actions that cannot be applied are
kept in a new relaxed plan called failed in the order they get
selected. If at least one action has been found to be applica-
ble, when all actions of RP have been tried, the second part
is not used (this is controlled by the boolean continue). The
relaxed plan RP is overwritten with failed and the process
is repeated until RP is empty or no action can be found.



function lookahead (S, RP ) /* S: state, RP: relaxed plan */
let plan = 〈〉 ;
let failed = 〈〉 ;
let continue = true ;
while continue ∧RP 6= 〈〉 do

continue← false ;
forall i ∈ [1, n] do /* with RP = 〈a1, . . . , an〉 */

if Prec(ai) ⊆ S then
continue← true ;
S ← S ↑ ai ;
plan← plan⊕ 〈ai〉

else
failed ← failed ⊕ 〈ai〉

endif
endfor ;
if continue then

RP ← failed ;
failed ← 〈〉

else
RP ← 〈〉 ;
while ¬continue ∧ failed 6= 〈〉 do

forall f ∈ Add(First(failed)) do
if f /∈ S ∧ ∃a ∈ (RP ⊕ failed) | f ∈ Prec(a) then

let actions =
{a ∈ O | f ∈ Add(a) ∧ Prec(a) ⊆ S} ;

if actions 6= ∅ then
let a = choose best(actions) ;
continue← true ;
S ← S ↑ a ;
plan← plan⊕ 〈a〉 ;
RP ← RP ⊕Rest(failed) ;
failed ← 〈〉

endif
endif

endfor ;
if ¬continue then

RP ← RP ⊕ 〈First(failed)〉 ;
failed ← Rest(failed)

endif
endwhile

endif
endwhile
return(S, plan)

end

Figure 1: Lookahead algorithm

The second part is entered when no action has been ap-
plied in the most recent iteration of the first part. The goal is
to try to repair the current (not applicable) relaxed plan, by
replacing one action by another which is applicable in the
current state S. Actions of failed are observed in turn, and
we look for an action (in the global set of actions O) applica-
ble in S, which achieves an add effect of the action of failed
we observe, this add effect being a precondition not satisfied
in S of another action in the current relaxed plan. If sev-
eral achievers are possible for the add effect of the action of
failed we observe, we select the one that has the minimum
cost in the relaxed planning graph used for extracting the
initial relaxed plan (the cost of an action is the sum of the
initial levels of its preconditions). When such an action is
found, it is added to the lookahead plan and the global loop

is repeated. The action of failed observed when a repairing
action was found is not kept in the current relaxed plan.

Conclusion
We presented a new method for deriving information from
relaxed plans, by the computation of lookahead plans. They
are used in a complete best-first search algorithm for com-
puting new nodes that can bring closer to a solution state.
Although lookahead states are generally not goal states and
the branching factor is increased with each created looka-
head state, the experiments we conducted prove that in nu-
merous domains from previous competitions (Rovers, Lo-
gistics, DriverLog, ZenoTravel, Satellite), our planner can
solve problems that are up to ten times bigger (in number of
actions of the initial state) than those solved by FF or by a
classical best-first search without lookahead.YAHSP seems
also to present good performances in domains from the 4th

IPC, such as Pipesworld, Satellite and Promela/Philosophers
where it solves all the problems, or Psr and Promela/Optical-
Telegraph were a very few problems are not solved. The
domain which seems to be the more difficult for YAHSP is
Airport, where 12 problems are not solved yet.The counter-
part for such improvements in performances and size of the
problems that can be handled resides in the quality of so-
lution plans that can be in some cases degraded (generally
in domains where there are a lot of subgoal interactions).
However, there are few of such plans and quality remains
generally very good compared to FF.

References
Blum, A., and Furst, M. 1997. Fast planning through
planning-graphs analysis. Artificial Intelligence 90(1-
2):281–300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Cayrol, M.; Régnier, P.; and Vidal, V. 2001. Least commit-
ment in Graphplan. Artificial Intelligence 130(1):85–118.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
Graph-based planning. In Proc. IJCAI-99, 318–325.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.
1997. Extending planning-graphs to an ADL subset. In
Proc. ECP-97, 273–285.
Long, D., and Fox, M. 1999. The efficient implementation
of the plan-graph in STAN. JAIR 10:87–115.
Nguyen, X.; Kambhampati, S.; and Nigenda, R. 2002.
Planning graph as the basis for deriving heuristics for plan
synthesis by state space and CSP search. Artificial Intelli-
gence 135(1-2):73–123.
Vidal, V. 2004. A Lookahead Strategy for Heuristic Search
Planning. In Proc. ICAPS-2004.


