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ABSTRACT
Divide-and-Evolve (DaE) is an original “memeticization” of
Evolutionary Computation and Artificial Intelligence Plan-
ning. However, like any Evolutionary Algorithm, DaE has
several parameters that need to be tuned, and the already
excellent experimental results demonstrated by DaE on bench-
marks from the International Planning Competition, at the
level of those of standard AI planners, have been obtained
with parameters that had been tuned once and for-all us-
ing the Racing method. This paper demonstrates that more
specific parameter tuning (e.g. at the domain level or even
at the instance level) can further improve DaE results, and
discusses the trade-off between the gain in quality of the re-
sulting plans and the overhead in terms of computational
cost.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence
Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
AI Planning, Memetic Algorithms, Parameter Tuning, Rac-
ing

1. INTRODUCTION
Parameter tuning is known as one of the main Achilles’

heel of Evolutionary Algorithms (together with their com-
putational cost). Whereas the efficiency of EAs has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

demonstrated on several application domains (see for in-
stance [33]), their successes were in general obtained through
a tedious and time consuming parameter tuning phase. Fur-
thermore, the newcomer to the field cannot benefit from
theoretical guidance or recognized guidelines, and is then
tempted to use off-the-shelf parameters, i.e. either default
parameters of the framework he is using, or parameter values
given in the literature for problems that resemble his.

Parameter setting, however, has today become an impor-
tant field of research [19]. Following [9], one distinguishes
between parameter tuning, that is done off-line, before run-
ning the algorithm, and parameter control, that is performed
during the run, either based on the behavior of the algorithm
(referred to as parameter adaptation), or relying on random
modifications of the parameters together with the idea that
fitness-based selection will also select adapted parameters
(referred to as parameter self-adaptation). This paper is
concerned with parameter tuning, i.e. off-line setting of the
parameters of an Evolutionary Algorithm, in the domain of
AI planning.

Several methods have been proposed for parameter tuning
since Grefenstette’s pioneering work [14]. However, they all
face the same generalization issue: can a parameter set that
has been optimized for a given problem be successfully used
to some other problem? The answer of course depends on
the similarity between both problems – and the issue then
is to estimate the similarities between different optimization
problems. However, even restricted to some precise opti-
mization domain (like AI Planning), there are very few ex-
amples today of meaningful similarity measures between op-
timization problems, or, alternatively, of sufficiently precise
and accurate features that would allow the user to describe
the problem at hand with sufficient accuracy so that the op-
timal parameter set could be learned from this description,
and carried on to other problems with similar description.
The one exception we are aware of is the work of Hoos and
co-authors in the SAT domain [17]: based on half a century
of SAT work, and hundreds of papers, many relevant fea-
tures have been gathered. Extensive parameter tuning on
several thousands of instances have allowed the authors to
learn a meaningful mapping between several parameteriza-
tion of a given algorithm and the resulting performance of
the algorithm (in terms of time to solution for satisfiable



SAT problems). Such mapping allows the user to come up
with a good, if not optimal, set of parameters by applying
this mapping to the features that can be easily computed
for each unknown instance she/he has to solve.

This paper is concerned with such issues in the domain
of the Artificial Intelligence (AI) Planning problems. An
AI planning task written in PDDL (more details in Section
2.1) is specified by a domain, that defines the predicates and
the actions, and an instance, that instantiates the objects,
and specifies the initial state and a list of goals to reach. A
solution is a plan, or a sequence of actions, such that when
applied to the initial state it leads the system into a state
where all goal atoms are true. Hence, for a given domain,
there can exist several instances sharing the same predicates
and actions, but differing either by the number of objects,
or the initial and goal states.

Unfortunately, there does not exist any set of features for
the AI Planning problem that are sufficient to describe the
characteristics of a planning task, like mentioned above for
the SAT domain [17]. The goal of this paper is hence less
ambitious, though it can be seen as a first step in the direc-
tion of automatic parameter setting for the Evolutionary AI
planner considered here. We will investigate the generality
of behavioral parameters, i.e. parameters of the algorithm
that directly impact on its behavior during the run (mainly
the parameters related to the different variation operators,
from their application rates to their internal parameters).
We will also consider some structural parameters, namely
here the set of predicates that are used to build the candi-
date solutions in the Evolutionary planner at hand, and ana-
lyze whether this set can be reduced, based on the analysis of
previous runs, in order to reduce the size of the search space,
and, hopefully, the computational cost of the optimization,
without degrading the quality of the resulting solutions.

More practically, the experimental investigation proposed
here will use 3 different domains of the AI Planning problem
that have been proposed in the past International Planning
Competitions (of 3 different types, see Section 4.1). Each
domain contains a series of instances. Racing [7] will be
conducted at a global level (aggregating quality from one
instance from each domain), at the domain level (aggregat-
ing quality of the biggest instance of the domain), and at
the instance level (an optimal parameter set will be deter-
mined for each instance). The way the performance of the
algorithm decreases when going from instance to domain to
global levels will give indications about both the homogene-
ity of the different domains and instances inside a domain,
and the robustness of the parameter setting for the Evolu-
tionary Planner at hand. Furthermore, the very good results
that have already been obtained by DaE on those instances
compared with the state-of-the-art have used a single pa-
rameter set (i.e. the result of global racing) [4]. The results
presented here will assess that there is still room for im-
provement for the Evolutionary Planner DaE.

The paper is organized as follows: domain independent
AI Planning is briefly introduced in Section 2.1. Section 2
presents DaE, the specific Evolutionary Planner. Section 3
rapidly recalls the basics of the Racing procedure that has
been used here, as well as the experimental protocol. Ex-
perimental results are presented and analyzed in Section 4,
comparing the performances of the parameter sets obtained
with different levels of racing, and comparing the variation

among the sets. As usual, Section 5 concludes the paper by
sketching directions for further research.

2. DIVIDE AND EVOLVE

2.1 AI Planning
An Artificial Intelligence (AI) planning task is specified

by the description of an initial state, a goal state, and a set
of possible actions. An action can be applied only if cer-
tain conditions in the current state are met, and modifies
the current state when applied. A solution to a planning
task is an ordered set of actions, whose execution from the
initial state transforms it into a state that includes the goal
state. The quality criterion of a plan depends on the type
of available actions: number of actions in the simplest case
(aka STRIPS domain); total cost for actions with cost; to-
tal makespan for durative actions which, in addition, may
temporally overlap.

Domain-independent planners rely on the Planning Do-
main Definition Language (PDDL) [22], inherited from the
STRIPS model [10], to standardize and represent a plan-
ning task. The language has been extended for representing
temporality and action concurrency in PDDL2.1 [11]. The
history of PDDL is closely related to the different editions
of the International Planning Competitions (IPCs http:

//ipc.icaps-conference.org/), and the problems submit-
ted to the participants are still the main benchmarks in AI
Planning (see Section 4.1).

The description of a planning task splits into two separate
parts: the generic domain on the one hand and a specific
instance scenario on the other hand. The domain definition
specifies object types, predicates and actions which capture
the possible state changes, whereas the instance scenario
declares the objects of interest, gives the initial state and
provides a description of the goal. A state is described by
a set of atomic formulae, or atoms. An atom is defined by
a predicate symbol from the domain definition, followed by
a list of object identifiers: (PREDICATE NAME OBJ1 ...
OBJN ).

The initial state is complete, i.e. it gives a unique status
of the world, whereas the goal might be a partial state, i.e.,
it can be true in many different (complete) states. An action
is composed of a set of preconditions and a set of effects, and
applies to a list of variables given as arguments, and possibly
a duration or a cost. Preconditions are logical constraints
which apply domain predicates to the arguments and trig-
ger the effects when they are satisfied. Effects enable state
transitions by adding or removing atoms.

A solution to a planning task is a consistent schedule of
grounded actions whose execution in the initial state leads
to a state that contains one goal state, i.e., where all atoms
of the problem goal are true. A planning task defined on
domain D with initial state I and goal G will be denoted
PD(I, G) in the following.

2.2 Evolutionary AI Planning
Early approaches to AI Planning using Evolutionary Al-

gorithms directly handled possible solutions, i.e. possible
plans: an individual is an ordered sequence of actions [28,
23, 31, 32, 8]. However, as it is often the case in Evolu-
tionary Combinatorial optimization, those direct encoding
approaches have limited performance in comparison to the
traditional AI planning approaches, and hybridization with



classical methods had been the way to success in many com-
binatorial domains, as witnessed by the fruitful emerging do-
main of memetic algorithms [15]. Along those lines, though
relying on an original “memeticization”principle, a novel hy-
bridization of Evolutionary Algorithms (EAs) with AI Plan-
ning, termed Divide-and-Evolve (DaE) has been proposed
[26, 27]. For a complete formal description, see [4].

In order to solve a planning task PD(I, G), the basic idea
of DaE is to find a sequence of states S1, . . . , Sn, and to
use some embedded planner to solve the series of planning
tasks PD(Sk, Sk+1), for k ∈ [0, n] (with the convention that
S0 = I and Sn+1 = G). The generation and optimization
of the sequence of states (Si) is driven by an evolutionary
algorithm, and we will now describe its main components:
the problem-specific representation of individuals, fitness,
and variation operators.

2.3 DAE Representation
A state is a list of atoms built over the set of predicates

and the set of object instances. However, searching the space
of complete states would result in a rapid explosion of the
size of the search space. Moreover, goals of planning prob-
lem need only to be defined as partial states. It thus seems
more practical to search only sequences of partial states,
and to limit the choice of possible atoms used within such
partial states. However, this raises the issue of the choice
of the atoms to be used to represent individuals, among
all possible atoms. The result of the previous experiments
on different domains of temporal planning tasks from the
IPC benchmark series [6] demonstrates the need for a very
careful choice of the atoms that are used to build the par-
tial states. The method used to build the partial states is
based on an estimation of the earliest time from which an
atom can become true. Such estimation can be obtained
by any admissible heuristic function (e.g h1, h2... [16]). The
possible start times are then used in order to restrict the
candidate atoms for each partial state. A partial state is
built at a given time by randomly choosing among several
atoms that are possibly true at this time. The sequence of
states is then built by preserving the estimated chronology
between atoms (time consistency). Heuristic function h1

has been used for all experiments presented here. However,
these restrictions may still contain a large number of atoms,
and it might be possible to further restrict this list only
allowing atoms that are built with a restricted set of predi-
cates. Manual choice had been used in the early versions of
DaE [3]. However, it can be expected that such structural
parameters can be learned by post-mortem analyzes of dif-
ferent runs of DaE on several problems of the same domain.
This will be investigated in Section 4.

Nevertheless, even when restricted to specific choices of
atoms, the random sampling can lead to inconsistent par-
tial states, because some sets of atoms can be mutually ex-
clusive1 (mutex in short). Whereas it could be possible to
allow mutex atoms in the partial states generated by DaE,
and to let evolution discard them, it seemed more efficient
to try to a priori forbid them. In practice, it is not possi-
ble to decide if several atoms are mutex unless solving the
complete problem. Nevertheless, binary mutexes can be ap-
proximated with a variation of the h2 heuristic function [16]

1Several atoms are mutually exclusive when there exists no
plan that, when applied to the initial state, yields a state
containing them all.

in order to build quasi pairwise-mutex-free states (i.e., states
where no pair of atoms are mutex).

An individual in DaE is hence represented as a variable-
length ordered time-consistent list of partial states, and each
state is a variable-length list of atoms that are not pair-
wise mutex. Furthermore, all operators that manipulate the
representation (see below) maintain the chronology between
atoms and the local consistency of a state, i.e. avoid pairwise
mutexes.

2.4 Initialization and Variation Operators
The initialization of an individual is the following: first,

the number of states is uniformly drawn between 1 and the
number of estimated start times (see Section 2.3); For every
chosen time, the number of atoms per state is uniformly cho-
sen between 1 and the number of atoms of the corresponding
restriction. Atoms are then chosen one by one, uniformly in
the allowed set of atoms, and added to the individual if not
mutex with other atoms that are already there.

A 1-point crossover is used, adapted to variable-length
representation in that both crossover points are indepen-
dently chosen, uniformly in both parents. It is applied with
probability pcross to the individuals after selection.

After a possible crossover, an individual has a probabil-
ity pmut of being mutated. Four different mutation opera-
tors have been designed, and once an individual has been
chosen for mutation (according to a population-level muta-
tion rate), the choice of which mutation to apply is made
according to user-defined relative weights (see Section 4.1).
Because an individual is a variable length list of states, and a
state is a variable length list of atoms, the mutation operator
can act here at two levels: at the individual level by adding
(addState) or removing (delState) a state; or at the state
level by adding (addAtom) or removing (delAtom) some
atoms in the given state. The choice between those opera-
tors is governed by user-defined relative weights (waddStation,
wdelStation, waddAtom, wdelAtom). Furthermore, mutation
addAtom also modifies every other atom of the state it is
applied to with probability pc, and, when adding a state,
the possible new atoms are those that are possibly true in
a time interval of radius r around the estimated time of the
partial state at hand. r takes integer values, being an in-
dex in the array of possible times given by heuristic h1 (see
Section 2.3.

2.5 Fitness and Embedded Planners
In DaE, the fitness of a list of partial states S1, . . . , Sn

is computed by repeatedly calling an external ’embedded’
planner to solve the sequence of problems PD(Sk, Sk+1),
{k = 0, . . . , n}. Any existing planner can be used, and the
early versions of DaE used the optimal planner CPT [30].
However, recent results [5] have demonstrated that much
better results can be obtained in a more robust way by us-
ing a suboptimal planner, namely YAHSP [29], a lookahead
strategy planning system for STRIPS planning which uses
the actions in the relaxed plan to compute reachable states
in order to speed up the search process.

For any given k, if the chosen embedded planner suc-
ceeds in solving PD(Sk, Sk+1), the final complete state is
computed by executing the solution plan from Sk, and be-
comes the initial state of the next problem. If all problems,
PD(Sk, Sk+1) are solved by the chosen embedded planner,
the individual is called feasible, and the concatenation of all



solution plans for all PD(Sk, Sk+1) is a global solution plan
for PD(S0 = I, Sn+1 = G). However, in the case of temporal
planning, this plan can in general be optimized by reschedul-
ing some of its actions, in a step called compression in order
to get a better makespan (see [27] for detailed discussion).
The quality of the compressed plan defines the fitness of a
feasible individual.

On the other hand, as soon as the chosen embedded plan-
ner fails to solve one PD(Sk, Sk+1) problem, the following
problem PD(Sk+1, Sk+2) cannot be even tackled by the cho-
sen embedded planner, as its initial state is in fact partially
unknown. All such plans receive a penalty inversely propor-
tional to the number of solved subproblems, and such that
the fitness of any infeasible individual is higher than that of
any feasible individual.

Finally, in order to avoid the embedded planner to be
stuck with subproblems that are in fact more difficult than
the original one, YAHSP was constrained not to use more
than a given number of nodes when solving any of the sub-
problems: first, a very large bound (e.g. 100000) is set when
evaluating the initial population. The bound for the remain-
ing of the run is then chosen as the median of the actual
number of nodes that have been used to find the solutions
during these evaluations.

3. PARAMETER TUNING FOR DAE
Two types of parameters are distinguished here: struc-

tural parameters act at the representation level, and include
here the choice of the predicates that are used to build the
intermediate states (see Section 2.3); Behavioral parame-
ters directly impact on the way the optimization proceeds,
and include the population size, the selection procedure and
its parameters, plus all parameters related to the variation
operators. However, the Darwinian-related parameters of
DaE had been fixed after some early experiments [26, 27]
(see Section 4.1), and only the 8 parameters related to the
variation operators that have been described in Section 2.4
have been tuned using Racing.

Whereas tuning behavioral parameters pertains to stan-
dard Parameter Tuning procedure (Racing has been used
here), problem-specific methods are required for the struc-
tural parameters. This Section details both tuning proce-
dures in turn.

3.1 Learning Predicates Across Runs
The set of predicates that are used to describe the partial

states of intermediate goals (see Section 2.3) is an important
component of the representation, and has a large impact on
the size of the search space. Hence pruning it as much as
possible can become a crucial issue in very large domains. In
order to assess the usefulness of a possible Learning across
runs technique, where, within a given domain, some runs
could help identifying the useful predicates, the following
statistics were gathered during the experiments. 50 runs
were run on the first 11 instances of each domain, using the
parameters learned at the domain level. All atoms of the 11
× 50 best plans were gathered, and two figures were com-
puted for each predicate: First, the frequency of appearance,
i.e. the proportion of those optimal plans that did contain
this predicate (number in [0, 1] for each predicate, 1 would
mean that this predicate was present in every solution plan);
Second, the proportion of atoms that did contain this pred-
icate – all those proportions sum up to 1.
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Figure 1: Predicate statistics: Frequency of occur-
rence (left) and proportion in all atoms (right) for
gold-miner domain. The predicates are in the same
order on the x-axis of both plots.

Based on those statistics, some clustering method was ap-
plied to this dataset. Relational analysis [2] with a threshold
of similarity equal to 0.5 was chosen: initiated and devel-
oped at IBM in the 70s [20], relational analysis does not
require to arbitrarily choose the number of clusters to be
discovered. After this analysis, the predicates that belong
to classes with more than 2 elements are retained, with the
expectation that restraining the choice of predicates for the
resolution of the other instances (not the first 11 ones, that
were used to identify those predicates) would speed up the
search (because the search space is smaller) while maintain-
ing the same quality of the solution.

This approach was tried on several domains, and Figure 1
displays both statistics described above for the gold-miner

domain, using the experimental settings described in next
Section. Both statistics obviously capture different criteria
of importance for the predicates. Unfortunately, the results
obtained by DaE when using the restricted set of predicates
chosen according to either of those statistics were not better,
and sometimes even worse, than the results of DaE using
the complete set of predicates. Furthermore, even when the
results were similar in quality, they were not obtained sig-
nificantly faster. Based on those experiments, it is not clear
that a restricted set of predicates can be learned, and at
least it cannot be learned as proposed here: the automatic
choice of a restricted set of predicates is still an open issue,
subject of further work.

3.2 Racing Behavioral Parameters
Since the early days of Evolutionary Algorithms [14], re-

searchers have tried to optimize the control parameters of
their favorite algorithms. Classical statistical methods like
ANOVA (Analysis of Variance), based on some extensive
DOE (Design Of Experiment) can be used out-of-the-box:
a finite number of parameter sets is chosen (e.g. a facto-
rial design that includes all possible combinations of a finite
number of values for each parameter), and a given number
of runs is run for each set. Standard ANOVA test indicates
whether some statistically significant difference exists among
all the sets, and pairwise tests then designate the best set.

Originally proposed for solving the model selection issue in
Machine Learning [21], Racing techniques were introduced
in Evolutionary context [7] in order to decrease the com-
putational cost of such naive approach by rapidly focusing
the search on the most performing parameter configurations.
The basic idea of Racing techniques is to identify, with
a given statistical confidence level, the poorly-performing
parameter configurations after only a few runs, and to go
on running only the promising configurations: after each



run, all configurations are tested against the best one, and
the ones that are significantly worse are simply discarded.
Such cycle execution-comparison-elimination is repeated un-
til only one parameter configuration remains, or the total
number of experiments has been run.

The efficiency of such technique highly depends on the sta-
tistical test used for the comparison. Because no assumption
can be made about the distribution of the results (e.g. nor-
mality), the most popular races [7, 34, 35] are based on the
non-parametric Friedman’s two-way analysis of variances by
ranks. Furthermore, given the statistical test, the user must
set two parameters for Racing: the number of initial runs
before starting the comparisons, and the confidence level of
the test.

The performance used for the comparison is generally the
best fitness reached for a given stopping criterion. Here, in
order to slightly favor the algorithms that run faster, a sec-
ondary component was added to the performance measure:
the fitness takes only integer values (however much the type
of problem, see Section 4.1), and some penalty in [0,1] was
hence added to the fitness. This penalty is proportional to
the computational time of the algorithm (normalized by the
maximum allowed time).

4. EXPERIMENTAL RESULTS

4.1 Experimental Setting
Previous experiments demonstrate that DaE can greatly

increase the performance of an encapsulated suboptimal plan-
ner, both in terms of coverage and solution quality, making
it competitive with state-of-the art planners [4] even when
it have used a single parameter set for all problems.

In order to show that there is still room for improvement
for the Evolutionary Planner DaE, experiments have been
run on 3 domains, and represent 3 different types of prob-
lems: gold-miner is a STRIPS problem (the quality of a
plan is the number of actions) from the IPC6 learning track,
openstacks uses actions with costs (the quality of a plan is
the total cost) of the IPC6 sequential satisficing track, and
zeno is a temporal problem (the quality of a plan is the total
makespan) from IPC3. All are available from IPC web site
at http://ipc.icaps-conference.org/.

Furthermore, in addition to comparing the results of the
different parameter sets obtained by the different parame-
ter tuning procedures described in Section 3, DaE results
have been compared to those of the best learner in their
category: the optimal CPT [30] for STRIPS domain, LPG
[12, 13] for temporal domain, and LAMA [25] (updated ver-
sion kindly given by the authors) for actions with costs. As
is the case for CPT, however, those learners were given a
strict 30min time limit. In particular, this explains why the
best learner is not always CPT, which is an optimal learner,
and could find the optimal value for most instances if given
enough time (though it cannot solve the largest zeno in-
stances whatever the time it is given).

DaE has been implemented within the Evolving Objects
framework (http://eodev.sourceforge.net/), an Open Source,
STL-based, C++ Evolutionary Computation library. The
fixed evolution engine is a (100+700)-ES: 100 individuals
generate 700 offsprings without selection. The survival se-
lection is performed among those 800 individuals using a de-
terministic tournament of size 5. For all runs, the stopping

criterion is the following: After at least 10 generations, evo-
lution is stopped if no improvement of the best fitness in the
population is made during 50 generations, with a maximum
of 1000 generations. Furthermore, all runs were allowed a
maximum CPU time of 30mn (running on 3.4 GHz cores).

For the Racing procedure (see Section 3.2), the initial
number of runs was set to 11 (the lowest number for sig-
nificance of the statistical test), and the confidence level to
0.025 (strong constraint for the rejection of equality hypoth-
esis between two parameter configurations). The racing pro-
cess was stopped after at most 50 runs.

For the 8 behavioral parameters (Section 2.4), 2 values
were tried, giving a total of 256 different parameter configu-
rations (more configurations would have resulted in too long
experiments). The following values were used: pcross = 0.2
or 0.6, pmut = 0.6 or 0.8, w∗ = 1 or 3, the relative weights of
the 4 mutation operators, r = 1 or 2, the tolerance radius for
time consistency, and pc = 0.2 or 0.8, probability to modify
an atom in a state undergoing mutation.

The global racing was performed by aggregating the per-
formances over one instance per domain, namely goldminer30,
openstacks21, and zeno14. For the racing per domain, the
instance with highest index (supposedly the most difficult
one) was chosen, namely goldminer30, openstacks30, and
zeno20.

4.2 Best Behavioral Parameters
Whereas 336 × 50 = 12080 runs would have been run

by a full factorial DOE, the global racing needed only 4351
runs, and racing per domain 4013, 4021 and 3966 runs for re-
spectively gold-miner, zeno simple time, and openstacks

domains. the full per instance racing required on average
5259, 5817 and 5473 runs for respectively gold-miner, zeno
simple time, and openstacks domains. However, those av-
erages hide large variations: paradoxically, all easy instances
required the maximum number of runs (12080), as several
parameter configurations could solve the instance to opti-
mum. This was the case for instances 1-20 for gold-miner,
1-12 for zeno and 1-18 for openstacks. Racing did save
around 65% CPU time for the global or per-domain ver-
sions, and little less for the racing per instance - though we
could have saved doing racing on the easy instances, as the
comparative results below will confirm.

Regarding the best parameter configurations, Figure 2 dis-
plays them all, on 8 lines: the horizontal line represents the
value obtained by the global racing, and only the values that
differ from this one are marked for each instance (column)
or the racing per domain (last column of each plot). There
seems to be a large consensus on the highest value for pc

(0.8, second line from bottom), that matches the results of
the global racing and all 3 domain racings. There is, too,
a reasonable consensus for choosing r = 2 (bottom line) for
gold-miner and zeno domains, matching the result of the
global racing, too, but openstacks racings prefered the other
value. On the other extreme, the values retained by the
instance-racings for pcross, pmut, wdelState, wdelAtom, and
waddState (lines 3-7 from bottom) seem to contradict those of
the global racing, while matching those of the domain-racing
only very partially. It seems that even when restricting the
number of possible values of the behavioral parameters to 2,
different instances even belonging to the same domain are
globally quite heterogenous for DaE.



4.3 Comparing Racing Procedures
Figure 3 displays the box-plots of the 50 runs for each

domain (top to bottom), each racing level (left to right),
and each instance (the x-axis). Additionally, the results of
YAHSP alone (the embedded planner), as well as the results
of the best opponent in its category. The numerical values
of the means and minimal values reached are also given, for
the sake of completeness, in the large unlabeled table (for
space reasons) at the end of the paper.

An immediate conclusion is the confirmation that DaE
outperforms by far YAHSP alone (as already demonstrated
in [5]). A second obvious conclusion is that the performances
of DaE when doing one racing per instance are better than
the other racing options. However, this is particularly true
for the most difficult instances (the instances with the high-
est index, at least), and for domains zeno and openstack,
whereas gold-miner seems easier to solve to optimality, or
near-optimality, with either global or per-domain racing:
only slight differences for few instances can be reported for
the best achieved values. However, the variation among
runs, as witnessed by the height of the box-plots of Fig-
ure 3, are clearly smaller with racing per instance. . . some
difference that is not so large on both other domains. Sur-
prisingly, on several instances (e.g. zeno 14, 15, 18 and
openstacks 24, 25, 28, the global racing found better re-
sults (lower minimum, similar median) than the per-domain
racing. This seems to indicate that those domains are rather
heterogeneous in difficulty for the large instances.

Finally, one good news, on the other hand, is that DaE is
able to find equal or better results than its best opponent in
the experimental conditions chosen here, as witnessed by the
last column of the final table: for some large instances, both
LAMA and LPG, at least when limited to the same harsh
30min constraint that was imposed here, are frequently out-
performed by DaE – at the cost of an instance-based racing
to tune DaE parameters.

5. CONCLUSION
DaE is an original “memeticization” of Evolutionary and

planning algorithms in the area of AI Planning. A lot of
progress has been made since its original inception [26, 27],
and it has now reached a level of performance that is able to
compete with the best state-of-the-art planners even when
it uses one single parameter configuration for all problems
[4]. In this paper, however, the results on three different
types of IPC problems showed that the quality of the re-
sults obtained with DaE can be further improved with more
specific parameter tuning, although these results were not
uniform over all tested domains. The practicality of such
approach remains however questionable, as racing per in-
stance requires to solve around 5000 times the instance with
different parameter configurations. Racing per domain is an
alternative whenever the user has to repeatedly solve new
instances from the same domain. However, referring to the
values retained by the different procedues (as discussed in
Section 4.2), the different instances even of the same domain
require different parameter settings, and the costly instance-
based racing seems to be mandatory to get the best restults
on the large and difficult instances.

Nevertheless, there is still room for improvement in tuning
DaE’s parameters. The choice of the set of parameter con-
figurations for the racing is still an open issue. Furthermore,

it was limited here by the CPU cost, and only 256 different
parameter configurations could be tried. There are other
alternatives to racing, that have the advantage that they
actually optimize the parameters, i.e., are not restricted to
a pre-defined set of configurations.

For instance, the Sequential Parameter Optimization method
(SPO) [1] alternatively tries to build a model of the perfor-
mance of the algorithm as a function of the parameters using
Gaussian Kernels. Some improvements to SPO have already
been proposed [18], that reduce its computational overhead
and increase its accuracy. However, it remains to be com-
pared to Racing for the Evolutionary Planning with DaE.
Also, recently, the REVAC method has been proposed [24],
that uses as a meta-EDA (Estimation of Distribution Algo-
rithm) to optimize the parameters of an EA, but also esti-
mates the relevance of each parameter at hand. This could
confirm some results obtained here, where some parameters
seem irrelevant because most racing results proposed the
same value.

But the ultimate step in the direction proposed in this
paper would be to design a completely automated proce-
dure for parameter tuning, that would not require extensive
runs that are unaffordable in real world situations for in-
stance. The way toward this grail probably lies in Adaptive
or Self-Adaptive techniques, yet to be proposed outside the
continuous domain where such techniques have now reached
maturity [9].
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Figure 2: Best parameter configurations after racing per instance, for gold-miner, zeno and openstacks domains.
From top to bottom, waddAtom, waddState, wdelAtom, wdelState, pmut, pcross, pc, r, and each parameter could take
2 values (see text). For each of those parameters, the horizontal line represents the value retained by the
global racing, the last column shows that retained by the racing per domain, and each other column is the
value obtained from racing on a single instance.
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Figure 3: Results for DaE on gold-miner, zeno and openstacks, together with the value found by YAHSP alone
(M), and the value from the best competitor, CPT (*), LPG (�), or LAMA (�). Note that YAHSP did solve
all instances, though the poor quality of its solution prevents from displaying it for the sake of readibility.
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# Global racing Domain racing Instance racing Best
Gold Min med. Min med. Min med. cpt
1 28 31 28 31 28 31 28
2 19 21 19 21 19 21 19
3 18 21 18 20 18 20 18
4 24 28 24 27 24 25 23
5 20 20 20 20 20 20 20
6 24 26 24 26 24 26 24
7 24 29 24 28 24 28 24
8 25 27 25 27 25 27 25
9 26 30 27 29 26 29 26
10 17 19 17 19 17 19 17
11 29 33 29 33 29 33 29
12 25 32 25 32 25 33 25
13 27 34 27 32 27 29 27
14 27 28 27 28 27 27 27
15 26 34 26 32 26 32 26
16 24 27 24 27 24 27 24
17 34 41 34 39 34 39 32
18 22 32 22 31 22 30 22
19 35 38 36 38 35 38 31
20 30 38 30 35 30 38 30
21 33 35 33 46 33 34 31
22 30 51 29 43 28 41 28
23 33 43 32 46 33 43 32
24 39 55 39 52 39 52 39
25 41 173 41 62 41 50 37
26 36 50 36 50 35 50 31
27 39 50 39 49 38 46 34
28 25 40 25 41 25 36 25
29 30 41 29 38 29 38 29
30 33 130 33 34 33 34 31

zeno Min med. Min med. Min med. lpg
1 173 173 173 173 173 173 173
2 592 599 592 599 592 592 592
3 280 280 280 280 280 280 280
4 529 529 522 529 522 529 522
5 400 400 400 400 400 400 400
6 323 323 323 323 323 323 323
7 672 692 665 692 665 679 665
8 522 522 522 522 522 522 522
9 522 629 522 536 522 536 522
10 453 636 453 636 453 636 453
11 433 433 423 453 423 433 423
12 549 626 549 616 549 603 549
13 659 659 633 659 626 659 596
14 503 1009 633 905 503 633 519
15 756 962 782 962 709 962 736
16 906 1438 872 1432 653 1292 683
17 1658 2454 1462 2623 1324 2444 1189
18 1547 2304 1801 2300 1152 2114 1312
19 1968 2740 1700 2767 1691 2710 1698
20 1780 2900 1628 2860 1628 2860 1898

Open Min med. Min med. Min med. lama
1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 2 2 2 2 2 2 2
4 2 3 2 3 2 3 2
5 2 2 2 2 2 2 2
6 4 4 4 4 4 4 4
7 4 4 4 4 4 4 4
8 4 4 4 4 4 4 4
9 4 4 4 4 4 4 4
10 4 5 4 5 4 4 4
11 5 6 5 5 5 5 10
12 3 5 3 5 3 4 3
13 5 6 5 6 5 6 10
14 5 7 5 7 4 7 10
15 5 7 5 6 5 6 10
16 8 10 7 10 7 10 10
17 8 8 7 9 7 8 10
18 6 8 7 8 6 7 18
19 12 14 11 14 10 13 11
20 14 17 15 22 12 16 12
21 10 16 10 16 9 12 10
22 18 29 17 28 16 19 14
23 17 27 14 26 13 14 10
24 13 24 14 25 12 16 11
25 25 39 27 38 21 38 20
26 22 36 22 36 18 35 15
27 27 39 25 37 22 25 21
28 36 53 37 52 33 52 32
29 42 53 35 54 33 54 30
30 37 54 33 53 33 53 34


