
Exploiting Past and Future: Pruning by
Inconsistent Partial State Dominance

Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal

CRIL – CNRS FRE 2499,
rue de l’université, SP 16
62307 Lens cedex, France

{lecoutre, sais, tabary, vidal}@cril.univ-artois.fr

Abstract. It has recently been shown, for the Constraint Satisfaction
Problem (CSP), that the state associated with a node of the search tree
built by a backtracking algorithm can be exploited, using a transposi-
tion table, to prevent the exploration of similar nodes. This technique
is commonly used in game search algorithms, heuristic search or plan-
ning. Its application is made possible in CSP by computing a partial
state – a set of meaningful variables and their associated domains – pre-
serving relevant information. We go further in this paper by providing
two new powerful operators dedicated to the extraction of inconsistent
partial states. The first one eliminates any variable whose current do-
main can be deduced from the partial state, and the second one extracts
the variables involved in the inconsistency proof of the subtree rooted
by the current node. Interestingly, we show these two operators can be
safely combined, and that the pruning capabilities of the recorded partial
states can be improved by a dominance detection approach (using lazy
data structures).

1 Introduction

Backtracking search is considered as one of the most successful paradigm for
solving instances of the Constraint Satisfaction Problem (CSP). Many improve-
ments have been proposed over the years. They mainly concern three research
areas: search heuristics, inference and conflict analysis. To prevent future con-
flicts, many approaches have been proposed such as intelligent backtracking (e.g.
Conflict Based Backjumping [19]), and nogood recording or learning [11].

In the context of satisfiability testing (SAT), studies about conflict analysis
have given rise to a new generation of efficient conflict driven solvers called
CDCL (Conflict Driven Clause Learning), e.g. Zchaff [22] and Minisat [8]. This
has led to a breakthrough in the practical solving of real world instances. The
progress obtained within the SAT framework has certainly contributed to a
renewed interest of the CSP community to learning [15, 4, 16].

In [17], a promising approach, called state-based search, related to learning,
has been proposed. The concept of transposition table, widely used in game
search algorithms and planning, has been adapted to constraint satisfaction.

More precisely, at each node of the search tree proved to be inconsistent, a
partial snapshot of the current state (a set of meaningful variables and their
associated domains) is recorded, in order to avoid a similar situation to occur
later during search. To make this approach quite successful, two important is-
sues must be addressed: limiting the space memory required, and improving the
pruning capabilities of recorded partial states. Extracting partial states as small
as possible (in terms of variables) is the answer to both issues. Different state
extraction operators, which have yielded promising practical results, have been
proposed in [17].

In this paper, we go further by providing two new powerful extraction opera-
tors. The first one eliminates any variable whose current domain can be deduced
from the partial state, and the second one extracts the variables involved in the
inconsistency proof of the subtree rooted by the current node. Interestingly, we
show that these two operators can be combined. Also, we improve the pruning
capabilities of the recorded inconsistent partial states using an advanced data
structure based on the SAT well-known watched literal technique, and domi-
nance detection (only equivalence detection was addressed in [17]).

Past

Future

node

Explanation

Reasoning

Reasoning

Based

Based
Proof

Fig. 1. Partial state
extraction from past
and future.

Figure 1 illustrates our approach. At each node of
the search tree, past and future can be exploited. On the
one hand, by collecting information from the past, i.e.
on the path leading from the root to the current node,
redundant variables of any identified partial state (ex-
tracted using any other operator) can be removed. This
is called explanation-based reasoning. On the other hand,
by collecting information from the future, i.e during the
exploration of the subtree, variables not involved in the
proof of unsatisfiability can be removed. This is called
proof-based reasoning. Pruning by inconsistent state
dominance is made more efficient through the combi-
nation of both reasonings.

2 Technical Background

A Constraint Network (CN) P is a pair (X ,C) where X is a finite set of n
variables and C a finite set of e constraints. Each variable X ∈ X has an
associated domain, denoted domP (X) or simply dom(X), which contains the set
of values allowed for X. The set of variables of P will be denoted by vars(P).
A pair (X, a) with X ∈ X and a ∈ dom(X) will be called a value of P . An
instantiation t of a set {X1, ..., Xq} of variables is a set {(Xi, vi) | i ∈ [1, q] and
vi ∈ dom(Xi)}. The value vi assigned to Xi in t will be denoted by t[Xi]. Each
constraint C ∈ C involves a subset of variables of X , called scope and denoted
scp(C), and has an associated relation, denoted rel(C), which represents the
set of instantiations allowed for the variables of its scope. A constraint C ∈ C
with scp(C) = {X1, . . . , Xr} is universal in P iff ∀v1 ∈ dom(X1), . . . ,∀vr ∈
dom(Xr),∃t ∈ rel(C) such that t[X1] = v1, . . . , t[Xr] = vr. If P and Q are two

CNs defined on the same sets of variables X and constraints C , we will write
P � Q iff ∀X ∈ X , domP (X) ⊆ domQ(X). A solution to P is an instantiation
of vars(P) such that all the constraints are satisfied. The set of all the solutions
of P is denoted sol(P), and P is satisfiable iff sol(P) 6= ∅.

The Constraint Satisfaction Problem (CSP) is the NP-complete task of deter-
mining whether or not a given CN is satisfiable. A CSP instance is then defined
by a CN, and solving it involves either finding one (or more) solution or deter-
mining its unsatisfiability. To solve a CSP instance, one can modify the CN by
using inference or search methods. Usually, domains of variables are reduced by
removing inconsistent values, i.e. values that cannot occur in any solution. In-
deed, it is possible to filter domains by considering some properties of constraint
networks. Generalized Arc Consistency (GAC) remains the central one. It is for
example maintained during search by the algorithm MGAC, called MAC in the
binary case.

From now on, we consider a backtracking search algorithm (e.g. MGAC)
using a binary branching scheme, in order to solve a given CN P . This algorithm
builds a tree search and employs an inference operator φ that enforces a domain
filtering consistency [6] at any step of the search called φ-search. We assume that
φ satisfies some usual properties such as monotony and confluence. φ(P) is the
CN derived from P obtained after applying the inference operator φ. If there
exists a variable with an empty domain in φ(P) then P is clearly unsatisfiable,
denoted φ(P) = ⊥. Given a set of decisions ∆, P |∆ is the CN derived from P
such that, for any positive decision (X = v) ∈ ∆, dom(X) is restricted to {v},
and, for any negative decision (X 6= v) ∈ ∆, v is removed from dom(X).

We assume that any inference is performed locally, i.e. at the level of a single
constraint C, during the propagation achieved by φ. The inference operator φ
can be seen as a collection of local propagators associated with each constraint,
called φ-propagators. These propagators can correspond to either the generic
revision procedure of a coarse-grained GAC algorithm called for a constraint, or
to a specialized filtering procedure (e.g. in the context of global constraints).

3 Inconsistent Partial States

In this section, we introduce the central concept of partial state of a constraint
network P . It corresponds to a set of variables of P with their potentially reduced
associated domains.

Definition 1. Let P = (X ,C) be a CN , a partial state Σ of P is a set of pairs
(X,DX) with X ∈X and DX ⊆ domP (X) such that any variable of X appears
at most once in Σ.

The set of variables occurring in a partial state Σ is denoted by vars(Σ),
and for any (X,DX) ∈ Σ, domΣ(X) denotes DX . At a given step of a back-
tracking search, a partial state can be associated with the corresponding node
of the search tree. This partial state is naturally built by taking into account all
variables and their current domains, and will be called the current state.

A network can be restricted over one of its partial state Σ by replacing in P
the domain of each variable occurring in Σ with its corresponding domain in Σ.
The restricted network is clearly smaller (�) than the initial network.

Definition 2. Let P = (X ,C) be a CN and Σ be a partial state of P . The
restriction ψ(P,Σ) of P over Σ is the CN P ′ = (X ,C) such that ∀X ∈ X ,
domP ′

(X) = domΣ(X) if X ∈ vars(Σ), and domP ′
(X) = domP (X) otherwise.

A partial state Σ of a CN P is said to be inconsistent with respect to P when
the network defined as the restriction of P over Σ is unsatisfiable.

Definition 3. Let P be a CN and Σ be a partial state of P . Σ is an inconsistent
partial state of P (IPSP for short), iff ψ(P,Σ) is unsatisfiable.

A partial state Σ is said to dominate a CN P if each variable of Σ occurs in
P with a smaller domain.

Definition 4. Let P and P ′ be two CNs such that P ′ � P , and Σ be a partial
state of P . Σ dominates P ′ iff ∀X ∈ vars(Σ), domP ′

(X) ⊆ domΣ(X).

The following proposition is at the core of state-based reasoning by domi-
nance detection.

Proposition 1. Let P and P ′ be two CNs such that P ′ � P , and Σ be an
IPSP . If Σ dominates P ′, P ′ is unsatisfiable.

Proof. It is immediate since we can easily deduce that ψ(P ′, Σ) � ψ(P,Σ) from
P ′ � P and the definition of ψ. 2

In the context of solving a constraint network P using a backtracking search,
this proposition can be exploited to prune nodes dominated by previously iden-
tified IPSP . An IPSP can be extracted from a node proved to be the root of an
unsatisfiable subtree. Although the current state associated to such a node is an
IPSP itself, it cannot obviously be encountered later during search: to be useful,
it must be reduced. That is why in what follows, we propose two new operators
(and adapt an existing one) which eliminate some variables from a state proved
unsatisfiable, while preserving its status of IPSP .

Finally, it is important to relate the concept of (inconsistent) partial state
with those of Global Cut Seed [10] and pattern [9]. The main difference is that
a partial state can be defined from a subset of variables of the CN, whereas
GCS and patterns, introduced to break global symmetries, contain all variables
of the CN. On the other hand, it is close to the notion of nogood as introduced
in [20], where it is shown that a nogood can be reduced to a subset of variables,
those involved in the decisions taken along the current branch leading to an
inconsistent node. In our context, we will show that it is possible to build a
partial state by removing variables involved or not in taken decisions.

4 Universality-based Extraction

In [17], three different operators have been introduced to extract constraint sub-
networks whose state can be recorded in a transposition table. These operators
allow to remove so-called s-eliminable (ρsol), u-eliminable (ρuni) and r-eliminable
(ρred) variables. The principle is to determine whether or not the subnetwork
corresponding to the current node of the search tree is equivalent to one already
recorded in the table. If this is the case, this node can be safely discarded.

In this paper, we apply this approach to state dominance detection and
propose new advanced operators. Only, the ρuni operator will be considered in
our context, as s-eliminable variables are also u-eliminable (ρsol is interesting to
count solutions), and the removal of r-eliminable variables is immediate when
considering dominance detection. We propose a new formulation of this operator.

Definition 5. Let P = (X ,C) be a CN . The operator ρuni(P) denotes the
partial state Σ = {(X, domP (X)) | X ∈ X and ∃C ∈ C | X ∈ scp(C) and C
is not universal in P}. A variable X ∈ X \ vars(Σ) is called an u-eliminable
variable of P .

The following proposition establishes that ρuni can extract inconsistent par-
tial states at any node of a search tree proved to be the root of an unsatisfiable
subtree.

Proposition 2. Let P and P ′ be two CNs such that P ′ � P . If P ′ is unsatisfi-
able then ρuni(P ′) is an IPSP .

Proof. As shown in [17], the constraint subnetwork defined from the variables of
Σ = ρuni(P ′) is unsatisfiable. Its embedding in any larger constraint network
entails its unsatisfiability. 2

5 Proof-based Extraction

Not all constraints of an unsatisfiable constraint network are necessary to prove
its unsatisfiability. Some of them form (Minimal) Unsatisfiable Cores (MUCs)
and different methods have been proposed to extract them. Indeed, one can
iteratively identify the constraints of a MUC following a constructive [5], a de-
structive [1] or a dichotomic approach [14, 13]. More generally, an unsatisfiable
core can be defined as follows:

Definition 6. Let P = (X ,C), P ′ = (X ′,C ′) be two CNs. P ′ is an un-
satisfiable core of P if P ′ is unsatisfiable, X ′ ⊆ X , C ′ ⊆ C and ∀X ′ ∈
X ′, domP ′

(X ′) = domP (X ′).

Interestingly, it is possible to associate an IPSP with any unsatisfiable core
extracted from a network P ′ � P . This is stated by the following proposition.

Proposition 3. Let P and P ′ be two CNs such that P ′ � P . For any unsatis-
fiable core P ′′ of P ′, Σ = {(X, domP ′′

(X)) | X ∈ vars(P ′′)} is an IPSP .

Proof. If Σ is not an IPSP , i.e. if ψ(P,Σ) is satisfiable, there exists an assignment
of a value to all variables of vars(Σ) such that all constraints of P are satisfied.
As any constraint of P ′′ is included in P ′, and so in P , this contradicts our
hypothesis of P ′′ being an unsatisfiable core. 2

As an inconsistent partial state can be directly derived from an unsatisfiable
core, one can be interested in extracting such cores from any node proved to
be the root of an unsatisfiable subtree. Computing a posteriori a MUC from
scratch using one of the approaches mentioned above seems very expensive since
even the dichotomic approach is in O(log(e).ke) [13] where ke is the number of
constraints of the extracted core. However, it is possible to efficiently identify
an unsatisfiable core by keeping track of all constraints involved in the proof of
unsatisfiability [1]. Such constraints are the ones used during search to remove,
through their propagators, at least one value in the domain of one variable. We
adapt this “proof-based” approach to extract an unsatisfiable core from any node
of the search tree by incrementally collecting relevant information.

Algorithm 1 depicts how to implement our method inside a backtracking
φ-search algorithm. The recursive function solve determines the satisfiability of
a network P and returns a pair composed of a Boolean (that indicates if P
is satisfiable or not), and a set of variables. This set is either empty (when P
is satisfiable) or represents a proof of unsatisfiability. A proof is composed of
the variables involved in the scope of the constraints that triggered at least one
removal during φ-propagation.

At each node, a proof, initially empty, is built from all inferences produced
when enforcing φ and the proofs (lines 6 and 8) associated with the left and right
subtrees (once a pair (X, a) has been selected). When the unsatisfiability of a
node is proved after having considered two branches (one labelled with X = a
and the other with X 6= a), one obtains a proof of unsatisfiability (line 10) by
simply merging the proofs associated with the left and right branches. Remark
that the worst-case space complexity of managing the different local proofs of
the search tree is in O(n2d) since storing a proof is O(n) and there are at most
O(nd) nodes per branch.

Algorithm 1: solve(P = (X ,C): CN): (Boolean, Set of Variables)
localProof ← ∅1

P ′ = φ(P) // localProof updated according to φ2

if P ′ = ⊥ then return (false, localProof)3

if ∀X ∈ X , |dom(X)| = 1 then return (true, ∅)4

select a pair (X, a) with |dom(X)| > 1 ∧ a ∈ dom(X)5

(sat, leftProof)← solve(P ′|X=a)6

if sat then return (true, ∅)7

(sat, rightProof)← solve(P ′|X 6=a)8

if sat then return (true, ∅)9

// leftProof ∪ rightProof is a proof of inconsistency for P ′
10

return (false, localProof ∪ leftProof ∪ rightProof)11

Using Algorithm 1, we can introduce a new advanced extraction operator
that only retains variables involved in a proof of unsatisfiability. This operator
can be incrementally used at any node of a search tree proved to be the root of
an unsatisfiable subtree.

Definition 7. Let P be a CN such that solve(P) = (false, proof). The operator
ρprf (P) denotes the partial state Σ = {(X, domP (X)) | X ∈ proof}. A variable
X ∈ vars(P) \ vars(Σ) is called a p-eliminable variable of P .

Proposition 4. Let P and P ′ be two CNs such that P ′ � P . If P ′ is unsatisfi-
able then ρprf (P ′) is an IPSP .

Proof. Let P = (X ,C) and solve(P ′) = (false, proof). Clearly, P ′′ = (proof,
{C ∈ C | scp(C) ⊆ proof}) is an unsatisfiable core of P ′. ρprf (P ′) is equal to
{(X, domP ′

(X)) | X ∈ proof} which is proved to be an IPSP by Prop. 3. 2

In practice, in Algorithm 1, one can call the ρprf operator to extract an
IPSP at line 10. Interestingly enough, the following proposition establishes that
ρprf is stronger than ρuni (i.e. allows to extract partial states representing larger
portions of the search space).

Proposition 5. Let P be an unsatisfiable CN. ρprf (P) ⊆ ρuni(P).

Proof. An universal constraint cannot occur in an unsatisfiability proof. An u-
eliminable variable only occurs in universal constraints, so is p-eliminable. 2

It must be noted that, unlike ρuni, extracting an inconsistent partial state us-
ing ρprf can only be performed when the subtree has been completely explored.
As a consequence, it is not possible to use this operator for pruning equiva-
lent states using a transposition table whose keys correspond to partial states.
Nevertheless, ρprf can be fully exploited in the context of dominance detection.

6 Explanation-based Extraction

In this section, we propose a second advanced extraction operator of (inconsis-
tent) partial states. Unlike the proof-based extraction operator, this new one
can be applied each time we reach a new node by analyzing all propagation
performed so far. The principle of this operator is to build a partial state by
eliminating the variables whose domains can be inferred from the other ones.
This is made possible by keeping track, for any value removed from the initial
network, of the constraint at the origin of its removal. This kind of original ex-
planations can be related to the concept of implication graphs used in the SAT
community. In the context of achieving arc consistency for dynamic CSPs [2],
such explanations were also exploited to put values back into domains when
constraints are retracted.

In constraint satisfaction, eliminating explanations are classically decision-
based, which means that each removed value is explained by a set of positive

decisions, i.e. a set of variable assignments. This is usually exploited to perform
some kind of intelligent backtracking (e.g. [7, 19, 12]). Interestingly, it is possible
to define explanations in a more general way by taking into account not only
some decisions taken during search but also some constraints of the original
network.

Explanations recorded for each removal can be represented using an implica-
tion graph as used in the satisfiability context [22]. Given a set of decisions (the
current partial instantiation), the inference process can be modelled using a fine-
grained implication graph. More precisely, for each removed value, one can record
positive and negative decisions implying this removal (through clauses). For our
purpose, we can simply reason using a coarse-grained level of the implication
graph. Whenever a value (X, a) is removed during the propagation associated
with a constraint C, the (local) eliminating explanation of (X, a) is simply given
by C. In other words, as our aim is to circumscribe a partial state (smaller than
the current state in terms of variables), we only need to know for each removed
value (X, a), the variables (in fact, those involved in C) responsible of its re-
moval. From this information, it is possible to build a directed graph G where
nodes correspond to variables and arcs to dependencies between variables. More
precisely, an arc exists in G from a variable Y to a variable X if there exists a
removed value (X, a) such that its local explanation is a constraint involving Y .
Also, a special node denoted by nil is considered, and an arc exists from nil to
a variable X if this variable is involved in a (positive or negative) decision. The
implication graph can then be used to extract an inconsistent partial state from
a subset of variables S (that already represents an inconsistent partial state)
by eliminating any variable with no incoming arc from a variable outside S. Of
course, such an extraction is not interesting if S is X since it necessary produces
a set of variables corresponding to all decisions.
Important: For all definitions and propositions below, we consider given two
CNs P = (X ,C) and P ′ such that P ′ corresponds to a node of the φ-search
tree of P . We obviously have P ′ � P .

Definition 8. For any (X, a) such that X ∈X and a ∈ domP (X)\domP ′
(X),

the local eliminating explanation of (X, a), denoted by exp(X, a) is, if it exists,
the constraint C whose associated φ-propagator has removed (X, a) along the
path leading from P to P ′, and nil otherwise.

These explanations can be used to extract a partial state from a CN wrt
P and a set of variables S. This partial state contains the variables of S that
cannot be “explained” by S.

Definition 9. ∀S ⊆ X , ρexpP,S(P ′) is the partial state Σ = {(X, domP ′
(X)) |

X ∈ S and ∃a ∈ domP (X) \ domP ′
(X) such that (exp(X, a) = nil or ∃Y ∈

scp(exp(X, a)) such that Y /∈ S). A variable X ∈ S \ vars(Σ) is called an
i-eliminable variable of P ′ wrt P and S.

Proposition 6. Let Σ be a partial state of P ′ and Σ′ = ρexpP,vars(Σ)(P
′). We

have: φ(ψ(P,Σ′)) = φ(ψ(P,Σ)).

Proof sketch. The only variables whose domain may differ between ψ(P,Σ′)
and ψ(P,Σ) are the i-eliminable variables of the set ∆ = vars(Σ) \ vars(Σ′).
We also have ∀X ∈ vars(Σ′), domψ(P,Σ′)(X) = domψ(P,Σ)(X) = domP ′

(X)
and ∀X ∈ ∆, domψ(P,Σ′)(X) = domP (X). This means that the domains of the
variables in Σ′ are in the state they were after performing all decisions and
propagations that lead to P ′, and the domains of the variables of ∆ are reset to
the state they were in P . Also, every variable X ∈ vars(P) \ vars(Σ) is such
that domψ(P,Σ′)(X) = domψ(P,Σ)(X).

Let R∆ = {(X, a) | X ∈ ∆ ∧ a ∈ domP (X) \ domP ′
(X)} be the set of

values removed for the variables of ∆ on the branch leading from P to P ′. For
any (X, a) ∈ R∆, we have an explanation C = exp(X, a) such that C 6= nil
and scp(C) ⊆ vars(Σ) since X is i-eliminable. In other words, the removal of
values from R∆ were triggered along the path leading to P ′ by constraints (the
explanations) only involving variables of Σ, that is variables of Σ′ and ∆ itself.

In ψ(P,Σ′), we can trigger the removal of all values in R∆ in the order they
were performed along the path leading to P ′. Indeed, following the same order,
the explanation associated with each value of R∆ can trigger its removal again
as (1) the domains of the variables of Σ′ are kept after their reduction in the
branch leading to P ′ (∀X ∈ Σ′, domψ(P,Σ′)(X) = domP ′

(X)), (2) variables of ∆
are reset to their state in P (∀X ∈ ∆, domψ(P,Σ′)(X) = domP (X)) and (3) the
explanation of any removal only involves variables of Σ. This can be shown by a
recurrence on the order values are removed in the branch leading to P ′. Finally, as
the removed values represent the only difference between ψ(P,Σ′) and ψ(P,Σ),
by confluence of φ, we can conclude that φ(ψ(P,Σ′)) = φ(ψ(P,Σ)). 2

The following corollary (whose proof is a direct consequence of Proposition
6) is particularly interesting since it states that we can safely use ρexp after any
other one which produces an IPSP .

Corollary 1. Let Σ be a partial state of P ′ and Σ′ = ρexpP,vars(Σ)(P
′). If Σ is an

IPSP then Σ′ is an IPSP .

It follows that the next two operators are guaranteed to produce an IPSP .

Definition 10. ρprexP (P ′) = ρexpP,vars(Σ)(P
′) with Σ = ρprf (P ′). ρunexP (P ′) =

ρexpP,vars(Σ)(P
′) with Σ = ρuni(P ′).

The ρexp operator can be implemented with a two-dimensional array exp such
that for any pair (X, a) removed from P during a φ-search, exp[X, a] represents
its local eliminating explanation. When a positive decision X = a is taken,
exp[X, b] ← nil for all remaining values b ∈ dom(X) | b 6= a, and when a
negative decision X 6= a is taken, exp[X, a]← nil. The space complexity of exp
is O(nd) while the time complexity of managing this structure is O(1) whenever
a value is removed or restored during search. The worst-case time complexity of
ρexp is O(ndr) where r denotes the greatest constraint arity. Indeed, there are
at most O(nd) removed values which admit a local eliminating explanation.

Figure 2 illustrates (on consistent partial states) the behavior of ρuni, ρexp

and their combination ρunex. The problem at hand involves four variables (X,

nil

X

Y

Z W

0 1 2 3
Z

21 3

X 6= Y

1 32

X

Y

Y ≥ Z

0 1 2 3

Σ3 = ρunexP (P ′) = ρexpP,vars(Σ1)
(P ′)→

{
Y, {1, 2}

}

exp(X, 1) = nil

exp(X, 2) = nil

exp(Y, 3) = (X 6= Y)

exp(Z, 3) = (Y ≥ Z)

exp(W, 0) = (Y ≤W)

W

Y ≤ W

P ′

P →


X, {1, 2, 3}
Y, {1, 2, 3}
Z, {0, 1, 2, 3}
W, {0, 1, 2, 3}



Σ1 = ρuni(P ′)→

 Y, {1, 2}
Z, {0, 1, 2}
W, {1, 2, 3}


Σ2 = ρexpP,vars(P)(P

′)→
{
X, {3}

}

Dependency Graph

P ′ = φ(P |X=3)→


X, {3}
Y, {1, 2}
Z, {0, 1, 2}
W, {1, 2, 3}



Fig. 2. Extracting partial states using ρuni, ρexp and ρunex.

Y , Z, W) and three constraints (X 6= Y , Y ≥ Z, Y ≤ W). When the decision
X = 3 is taken, the explanation associated with the removal of 1 and 2 from
dom(X) is set to nil. These removals are propagated to Y through the constraint
X 6= Y , yielding the removal of 3 from dom(Y). The explanation of this removal
is thus set to X 6= Y . This removal is then propagated to Z and W : 3 is removed
from dom(Z) through the propagation of Y ≥ Z which constitutes its explana-
tion, and 0 is removed from dom(W) through the propagation of Y ≤ W . No
more propagation is possible, and the resulting network is denoted by P ′. The
dependency graph exploited later by ρexp is then built from these explanations.

Applying ρuni to P ′ leads to the elimination of X yielding the partial state
Σ1, as X is now only involved in universal constraints. Indeed, the remaining
value 3 in dom(X) is compatible with the two remaining values 1 and 2 in
dom(Y) within the constraint X 6= Y . The three other variables are involved in
constraints which are not universal.

Applying ρexp to P ′ and S = vars(P) leads to the elimination of Y , Z and
W , yielding the partial state Σ2 = {(X, {3})}. Indeed, X is the only variable
from which a removal is explained by nil (S being all variables of P ′, this is the
only relevant condition for determining variables of interest). This illustrates the
fact that applying ρexp to all variables of a constraint network has no interest: as
we obtain the set of decisions of the current branch, the partial state can never
be encountered (or dominated) again without restarts. Note that we would have
obtained the same result with a classical decision-based explanation scheme.

More interesting is the application of ρunex. Once ρuni has been applied,
giving the partial state Σ1 whose variables are {Y,Z,W}, ρexp is applied to
determine which variables of Σ1 have domains that can be determined by other
variables of Σ1. The variable Y is the only one for which all removals cannot
be explained by constraints whose scope involve variables inside Σ1 only, as
the explanation X 6= Y of the removal (Y, 3) involves now a variable outside
the variables of interest. This yields the partial state Σ3 = {(Y, {1, 2})}, that
contains a variable which is not a decision, and which can then be exploited later
during search.

7 Dominance State Detection

In the context of a φ-search algorithm, we give now some details about the
exploitation of the reduction operators. At each node associated with an un-
satisfiable network, one can apply one (or a combination) of the operators to
extract an inconsistent partial state, and record it in an IPSP base. The IPSP
can then be exploited later during search either to prune nodes of the search
tree, or to make additional inferences.

Equivalent nodes can be pruned using transposition tables as proposed in [17],
but ρprf cannot be exploited this way. Indeed, when a node is opened, computing
a key for it (to be used in the transposition table) is impossible: it requires the
complete exploration of the subtree rooted by this node. As such, equivalence
detection through the transposition table cannot be performed. However, a node
dominated by an IPSP stored in the base can be safely pruned.

One can go further, by identifying the values whose presence would lead to
expand nodes dominated by an IPSP . Similarly to [16], such inferences can be
done thanks to the lazy data structure of watched literals [18] used to manage the
IPSP base. A watched literal of an IPSP Σ is a pair (X, a) such thatX ∈ vars(Σ)
and a ∈ domΣ(X). It is said to be valid when a ∈ dom(X) \ domΣ(X). Two
watched literals are associated with each inconsistent partial state Σ. Σ is valid
if its two watched literals are valid. When a value a is removed from dom(X),
the set of the IPSP where (X, a) is watched is not valid anymore. To maintain
the validity of these inconsistent partial states, we must for each of them, either
find another valid watched literal, or remove the values in dom(Y) ∩ domΣ(Y)
where (Y, b) is the second watched literal. Exploiting this structure, we have the
guarantee that the current node cannot be dominated by an IPSP .

Note that, when using the ρprf operator, inferences must be performed with
caution. Indeed, the IPSP Σ responsible of an inference participates to the proof
of unsatisfiability of the current node. Σ can be seen as an additional constraint
of the initial network: each variable occurring in vars(Σ) must then also occur
in the proof. Finally, whatever the operators are used, variables whose current
domain has never been reduced on the current branch can be safely eliminated.
Indeed, the dominance for such variables is guaranteed to hold.

Table 1. Number of solved instances per series (1, 800 seconds allowed per instance).

Series #Inst
brelaz dom/ddeg dom/wdeg

¬ρ ρuni ρprex ¬ρ ρuni ρprex ¬ρ ρuni ρprex

aim 48 32 25 (29) 39 32 25 (29) 38 48 43 (47) 48
dubois 13 4 0 (2) 13 4 1 (2) 13 5 13 (3) 11

ii 41 10 10 (10) 13 10 9 (10) 16 20 18 (19) 31
os-taillard-10 30 5 5 (5) 5 4 4 (4) 4 10 10 (10) 13

pigeons 25 13 17 (19) 13 13 17 (19) 13 13 16 (18) 10
pret 8 4 4 (4) 8 4 4 (4) 8 4 8 (4) 8

ramsey 16 3 3 (3) 6 5 3 (5) 5 6 5 (6) 6
scens-11 12 0 0 (0) 0 0 0 (0) 4 9 7 (8) 9

193 71 64 (72) 92 73 63 (73) 105 115 120 (115) 136

8 Experiments

In order to show the practical interest of the new operators introduced for dom-
inance detection, we have conducted an experimentation on a Xeon processor
cadenced at 3 GHz and 1GiB RAM. We have used benchmarks from the second
CSP solver competition (http://cpai.ucc.ie/06/Competition.html) including bi-
nary and non binary constraints expressed in extensional and intentional form.
We have used MGAC (in our solver Abscon1) with various combinations of ex-
traction operators and variable ordering heuristics. Performance is measured in
terms of cpu time in seconds (cpu), number of visited nodes (nodes), memory
in MiB (mem) and average number of variables eliminated when building in-
consistent partial states (elim). For ρuni, we considered the same restriction as
the one mentioned in [17]: only the variables with a singleton domain involved
in constraints binding at most one non singleton-domain variable are removed
(to avoid checking the universality of constraints). We also experimented equiv-
alence detection (using a transposition table) with the operator ρred proposed
in [17]: as ρred is related to ρuni since they have the same behaviour for domi-
nance detection, the obtained results are given between brackets in the columns
of ρuni.

Table 1 presents the results obtained on some series of structured instances.
We do not provide any results on random instances as, unsurprisingly, our learn-
ing approach is not adapted to them. The tested configurations are labelled ¬ρ
(MGAC without state-based reasoning), ρuni and ρprex, each one being com-
bined with the three heuristics brelaz, dom/ddeg and dom/wdeg [3]. The first
thing that we can observe is that, whatever the heuristic is used, more instances
are solved using ρprex. Also, note that the performance of the dominance de-
tection approach can be damaged when ρuni is used: more instances are solved
with brelaz and dom/ddeg using equivalence detection (results between brack-
ets). Indeed, for ρuni, the size of the IPSP can often be quite high, which directly
affects dominance checking; whereas equivalence detection can be performed in
nearly constant time using a hash table.

Table 2 focuses on some instances with the same tested configurations (brelaz
is omitted, as similar results are obtained with dom/ddeg). One can first observe
a drastic reduction in the number of expanded nodes using dominance detection,

1 http://www.cril.univ-artois.fr/∼lecoutre/research/tools/abscon.html

Table 2. Results on some structured instances (1, 800 seconds allowed per instance).

dom/ddeg dom/wdeg
¬ρ ρuni ρprex ¬ρ ρuni ρprex

BlackHole-4-4-e-0
cpu 2.39 2.31 (1.9) 2.36 2.3 3.07 (2.25) 3.37
nodes 6, 141 1, 241 (1, 310) 931 6, 293 3, 698 (4, 655) 5, 435

(#V = 64) elims 0 13.61 (14.16) 58.88 0 14.35 (14.84) 58.02

aim-100-1-6-1
cpu 11.54 65.16 (19.2) 2.45 2.14 2.45 (2.34) 2.2
nodes 302K 302K (302K) 737 987 998 (909) 616

(#V = 200) elims 0 161.80 (161.78) 190.22 0 174.94 (176.18) 189.78

aim-200-1-6-1
cpu − − (−) 4.059 3.4 4.44 (6.56) 3.18
nodes 6, 558 9, 063 7, 637 (26, 192) 1, 814

(#V = 400) elims 382.73 0 356.39 (348.35) 388.63

composed-25-10-20-9
cpu 7.39 6.02 (6.95) 2.65 2.56 2.77 (2.56) 2.47
nodes 75, 589 20, 248 (54, 245) 184 323 315 (323) 164

(#V = 105) elims 0 48.90 (48.95) 87.75 0 67.02 (65.91) 89.25

driverlogw-09-sat
cpu 422.2 189.71 (378.87) 83.85 13.69 14.61 (13.13) 12.25
nodes 118K 37, 258 (98, 320) 17, 623 12, 862 8, 592 (11, 194) 6, 853

(#V = 650) elims 0 511.69 (514.14) 541.81 0 513.21 (523.26) 544.05

dubois-20
cpu 183.38 110.71 (78.94) 1.4 65.95 1.62 (47.72) 1.96
nodes 24M 787K (2, 097K) 379 8, 074K 1, 252 (1, 660K) 2, 133

(#V = 60) elims 0 42.00 (48.50) 56.63 0 52.25 (45.93) 51.17

dubois-30
cpu − − (−) 1.7 − 2.41 (−) 3.39
nodes 724 4, 267 12, 190

(#V = 90) elims 86 81.2 78.5

ii-8a2
cpu 16.87 − (44.23) 4.09 3.08 3.99 (3.69) 2.99
nodes 214K (214K) 5, 224 4, 390 4, 391 (4, 390) 1, 558

(#V = 360) elims 0 (276.08) 317.04 0 291.67 (291.90) 316.98

ii-8b2
cpu − − (−) 7.92 9.16 26.86 (22.48) 6.71
nodes 2, 336 11, 148 11, 309 (11, 148) 3, 239

(#V = 1, 152) elims 1, 090 0 979.59 (980.08) 1, 050

os-taillard-10-100-3
cpu − − (−) − − − (−) 467.26
nodes 134K

(#V = 100) elims 66.90

pigeons-15
cpu − 53.34 (5.63) − − 882.41 (23.62) −
nodes 106K (115K) 517K (900K)

(#V = 15) elims 6.99 (7.49) 8.13 (8.63)

pret-150-25
cpu − − (−) 3.11 − 59.66 (6.32) 4.4
nodes 9, 003 203K (97, 967) 17, 329

(#V = 150) elims 135.72 132.62 (133.71) 137.67

pret-60-25
cpu 66.71 3.17 (3.38) 1.79 76.57 1.97 (1.94) 2.0
nodes 7, 822K 17, 530 (47, 890) 1, 503 7, 752K 2, 631 (4, 080) 2, 501

(#V = 60) elims 0 45.56 (45.71) 52.32 0 51.47 (52.46) 51.98

ramsey-16-3
cpu 72.72 − (108.41) 18.25 − − (−) −
nodes 1, 162K (1, 162K) 46, 301

(#V = 120) elims 0 (84.44) 105.49

ramsey-25-4
cpu 3.86 4.18 (4.11) 4.15 3.81 4.17 (4.14) 4.04
nodes 591 591 (591) 570 590 (591) (590) 537

(#V = 300) elims 0 191.62 (191.40) 274.72 0 159.81 (159.73) 269.36

scen11-f6
cpu − − (−) 371.02 42.15 13.15 (10.17) 5.56
nodes 110K 217K 16, 887 (18, 938) 2, 585

(#V = 680) elims 655.80 0 22.72 (22.17) 654.81

especially with ρprex. This is mainly due to the high average percentage of elim-
inated variables from IPSP (around 90% for ρprex, much less for ρuni), which
compensates the cost of managing the IPSP base. The bad results with ρprex on
pigeons instances can be explained by the fact that many positive decisions are
stored in unsatisfiability proofs when propagating the IPSP base.

Table 3 exhibits some results obtained for hard RLFAP instances. We only
consider dom/wdeg here, but with all extraction operators mentioned in this
paper. Clearly, the dominance detection approach with ρuni suffers from mem-

Table 3. Results on hard RLFAP instances using dom/wdeg (1, 800 seconds allowed).

Instance ¬ρ ρuni ρunex ρprf ρprex

cpu 9.0 10.4 (8.54) 12.3 (9.6) 5.7 5.5
scen11-f8 mem 29 164 (65) 49 (37) 33 33

(#V = 680) nodes 15, 045 13, 319 (13, 858) 13, 291 (13, 309) 1, 706 1, 198
elim 39.0 (38.1) 590.2 (590.2) 643.3 656.0
cpu 26.0 11.1 (9.23) 10.4 (10.06) 5.5 5.6

scen11-f7 mem 29 168 (73) 49 (37) 33 33
(#V = 680) nodes 113K 13, 016 (14, 265) 12, 988 (13, 220) 2, 096 1, 765

elim 25.2 (25.4) 584.1 (584.7) 647.5 654.8
cpu 41.2 15.0 (10.61) 15.5 (10.14) 6.4 6.8

scen11-f6 mem 29 200 (85) 53 (37) 33 33
(#V = 680) nodes 217K 16, 887 (18, 938) 16, 865 (17, 257) 2, 903 2, 585

elim 22.7 (22.1) 588.6 (589.3) 648.8 654.8
cpu 202 − (72.73) 195 (98.16) 31.5 12.2

scen11-f5 mem 29 256 342 (152) 53 41
(#V = 680) nodes 1, 147K 257K 218K (244K) 37, 309 14, 686

elim 24.1 592.6 (583.36) 651.6 655.7
cpu 591 − (−) 555 (261.67) 404 288

scen11-f4 mem 29 639 (196) 113 93
(#V = 680) nodes 3, 458K 365K (924K) 148K 125K

elim 586.6 (593.1) 651.7 655.0

ory consumption: due to the size of the IPSP , two instances remain unsolved.
Combining ρuni with ρexp (i.e. ρunex) allows to save memory (between brackets,
we have the results for ρred combined with ρexp). However, the best performance
is obtained when combining explanation-based and proof-based reasoning, i.e.
with ρprex. Note that the average size of the inconsistent partial states recorded
in the base is very small: they involve about 680− 655 = 25 variables.

To summarize, the results that we have obtained with the new extraction
operators and the dominance detection approach outperform, both in space and
time, those obtained with the operator ρred which is dedicated to equivalence
detection (ρred combined with ρexp gives similar results as ρred alone, except a
memory reduction for a few instances). Besides, it allowed to solve more instances
in a reasonable amount of time. We believe the results can still be improved since
we did not control the partial states recorded in the base (and this has a clear
impact when the resolution is difficult, as e.g. for the instance scen11-f4).

9 Conclusion

In this paper, we have introduced two operators that enable the extraction of
an (inconsistent) partial state at each node of a search tree. Whereas the former
collects information above the current node (propagation analysis from the root
to the node) to perform an explanation-based extraction, the latter collects it
below (subtree analysis) to perform a proof-based extraction – making these two
approaches complementary. Next, we have shown that inconsistent partial states
can be efficiently exploited to prune the search space by dominance detection.

State-based search as studied in [17] and in this paper can be seen as an
approach to automatically break some form of local symmetries. A direct per-
spective of this new paradigm is to combine it with SBDD (Symmetry Breaking
by Dominance Detection) [9, 10, 20, 21].

10 Acknowledgments

This paper has been supported by the CNRS and the ANR “Planevo” project
noJC05 41940.

References

1. R.R. Baker, F. Dikker, F.Tempelman, and P.M. Wognum. Diagnosing and solv-
ing over-determined constraint satisfaction problems. In Proceedings of IJCAI’93,
pages 276–281, 1993.

2. Christian Bessière. Arc-consistency in dynamic constraint satisfaction problems.
In Proceedings of AAAI’91, pages 221–226, 1991.

3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

4. K. Boutaleb, P. Jégou, and C. Terrioux. (no)good recording and robdds for solving
structured (v)csps. In Proceedings of ICTAI’06, pages 297–304, 2006.

5. J.L. de Siqueira and J.F. Puget. Explanation-based generalisation of failures. In
Proceedings of ECAI’88, pages 339–344, 1988.

6. R. Debruyne and C. Bessiere. Domain filtering consistencies. Journal of Artificial
Intelligence Research, 14:205–230, 2001.

7. R. Dechter and D. Frost. Backjump-based backtracking for constraint satisfaction
problems. Artificial Intelligence, 136:147–188, 2002.

8. N. Eén and N. Sorensson. An extensible sat-solver. In Proc. of SAT’03, 2003.
9. T. Fahle, S. Schamberger, and M. Sellman. Symmetry breaking. In Proceedings of

CP’01, pages 93–107, 2001.
10. F. Focacci and M. Milano. Global cut framework for removing symmetries. In

Proceedings of CP’01, pages 77–92, 2001.
11. D. Frost and R. Dechter. Dead-end driven learning. In Proceedings of AAAI’94,

pages 294–300, 1994.
12. M. Ginsberg. Dynamic backtracking. Artificial Intelligence, 1:25–46, 1993.
13. F. Hemery, C. Lecoutre, L. Sais, and F. Boussemart. Extracting MUCs from

constraint networks. In Proceedings of ECAI’06, pages 113–117, 2006.
14. U. Junker. QuickXplain: preferred explanations and relaxations for over-

constrained problems. In Proceedings of AAAI’04, pages 167–172, 2004.
15. G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In Proceedings of

AAAI’05, pages 390–396, 2005.
16. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Recording and minimizing no-

goods from restarts. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 1:147–167, 2007.

17. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Transposition Tables for Constraint
Satisfaction. In Proceedings of AAAI’07, pages 243–248, 2007.

18. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver. In Proceedings of DAC’01, pages 530–535, 2001.

19. P. Prosser. Hybrid algorithms for the constraint satisfaction problems. Computa-
tional Intelligence, 9(3):268–299, 1993.

20. J.F. Puget. Symmetry breaking revisited. Constraints, 10(1):23–46, 2005.
21. M. Sellmann and P. Van Hentenryck. Structural symmetry breaking. In Proceedings

of IJCAI’05, pages 298–303, 2005.
22. L. Zhang, C.F. Madigan, M.W. Moskewicz, and S. Malik. Efficient conflict driven

learning in a Boolean satisfiability solver. In Proceedings of ICCAD’01, pages
279–285, 2001.

