
Abstract

Planners from the family of Graphplan (Graphplan, IPP,
STAN...) are presently considered as the most efficient
ones on numerous planning domains. Their partially
ordered plans can be represented as sequences of sets of
simultaneous actions. Using this representation and the
criterion of independence, Graphplan constrains the choice
of actions in such sets. We demonstrate that this criterion
can be partially relaxed in order to produce valid plans in
the sense of Graphplan. Our planner LCGP needs fewer
levels than Graphplan to generate these plans (the same
number in the worst cases). Then we present an
experimental study which demonstrates that, in classical
planning domains, LCGP "practically" solves more
problems than planners from the family of Graphplan
(Graphplan, IPP, STAN...). In most cases, these tests
demonstrate the best performances of LCGP. Then, we
present a domain-independent heuristic for variable and
domain ordering. LCGP is thus improved using this
heuristic, and compared with HSP-R, a very efficient
non-optimal sequential planner, based on an heuristic
backward state space search.

1 Introduction
Since some years, the development of a new family of
planning systems based on the planner Graphplan (Blum
and Furst 1995) leads to numerous evolutions in planning.
Graphplan develops, level after level, a compact search
space called a planning-graph. During this construction
stage, it does not use all the informations (exclusion
relations among state variables or actions) that are
progressively taken into account in the other planning
techniques (state space search, search in the space of
partial plans). These constraints are only computed and
memoized at each level as mutual exclusions in the way
of CSP (Kambhampati 1999a, 1999b). The search space is
easier to develop but, on the other side, its achievement
does not coincide with the obtaining of a solution. A
second stage (extraction stage) is necessary to try to
extract a valid plan from the planning-graph and the sets
of mutual exclusions.

Several techniques have been employed to improve
Graphplan: reduction of the search space before the
extraction stage (Fox and Long 1998; Nebel, Dimopoulos,
 Copyright 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

and Koehler 1997), improvement of the domain and
problem representation language (Koehler et al. 1997;
Weld, Anderson, and Smith 1998; Guéré and Alami 1999;
Koehler 1998), improvement of the extraction stage
(Kambhampati 1999a, 1999b; Kautz and Selman 1999;
Long and Fox 1999; Fox and Long 1999; Zimmerman and
Kambhampati 1999).

2 Summary of our method
In all these works, the structure of the generated plans
remains the same whatever the construction graph method
is. A plan can indeed be represented as a minimal
sequence of sets of simultaneous actions: each step of the
algorithm produces a level of the planning-graph, each
level being connected to a set of simultaneous actions.

In a plan of Graphplan (minimal sequence of sets of
simultaneous actions), the computation of the final
situation Ef − produced by the simultaneous application of
the actions of a set Q from an initial situation Ei − is
independent of the order employed to apply these actions.
The final situation remains the same whatever the order of
these actions in the sequence is, provided that Q checks a
property I (Independence). This property is easy to test
and I(Q) denotes that Q verifies the property I. Ef is
directly computed from the initial situation Ei and from
the simultaneous application of the actions of the set Q: Ef

= g(Ei, Q).
We have established another property A (Authorization)

which is less restrictive than I and easier to verify (I(Q) ⇒
A(Q)). This property guarantees the existence of at least
one serialization S of the actions of Q (but does not
require its computation). The application of this sequence
to Ei can be identically computed (Ef = g(Ei, Q)) but Ef

can no more be considered as the result of the
simultaneous application of the actions of Q.

Then, we have developed a Graphplan-like planner
called LCGP (Least Committed Graphplan, see (Cayrol,
Régnier and Vidal 2000)) which works in the same way: it
incrementally constructs a stratified graph, then searches
it to extract a plan. The graph that Graphplan would have
built is a subgraph of the one of LCGP (cf. example §
6.4). So, goals generally appear sooner (at the same time
in the worst cases). LCGP transforms then the produced
plan into a Graphplan-like plan. The earlier obtaining of a
solution is done to the prejudice of the optimality of these

New Results about LCGP, a Least Committed GraphPlan

Michel Cayrol Pierre Régnier Vincent Vidal

IRIT
Université Paul Sabatier
118, route de Narbonne

31062 TOULOUSE Cedex 04, FRANCE
{cayrol, regnier, vvidal}@irit.fr

plans in the sense of Graphplan (number of levels). In
practice, in classical benchmarks (Logistics, Ferry...),
LCGP rapidly gives a solution when Graphplan is unable
to produce a plan after a significant running time.

At first, we will formalize the structure of the plans of
Graphplan (cf. § 3). Then, we will suggest that Graphplan,
using the Independence criterion, over-constrains the
choice of the actions into the sets of simultaneous actions
(cf. § 4). We will demonstrate that we can relax this
criterion by changing the structure of the produced plans.
For lack of space, cf. (Vidal 2000) for details of
demonstrations and algorithms.

3 Semantics and formalization of the plans of
Graphplan
The most important element of a plan is the action, which
is an instance of an operator. In Graphplan, operators are
Strips-like operators, without negation in their
preconditions. We use a first order logic language L,
constructed from the vocabularies Vx, Vc, Vp that
respectively denote finite disjoint sets of symbols of
variables, constants and predicates. We do not use
symbols of functions.

Definition 1: An operator, denoted by o, is a triple 〈pr,
ad, de〉 where pr, ad and de denote finite sets of atomic
formulas in the language L. Prec(o), Add(o) and Del(o)
respectively denote the sets pr, ad and de of the operator
o. O denotes the finite set of operators.

Definition 2: A state is a finite set of ground atomic
formulas (i.e. without any symbol of variable). A ground
atomic formula is also called a proposition. P denotes the
set of all the propositions that can be constructed with the
language L.

Definition 3: An action denoted by a is a ground instance
oθ = 〈prθ, adθ, deθ〉 of an operator o which is obtained by
applying a substitution θ defined with the language L such
that adθ and deθ are disjoint sets. Prec(a), Add(a), Del(a)
respectively denote the sets prθ, adθ, deθ and represent
the preconditions, adds and deletes of a.

Definition 4: A denotes the finite set of actions obtained
by applying all the possible ground instanciations of the
operators of O.

The main structure we are going to define, the sequence
of sets of actions, will be used later to represent the plans
of Graphplan and LCGP: it defines the order in which the
sets of actions are considered from the point of view of
the execution of the actions they contain.

Definition 5: A sequence of sets of actions is a finite and
ordered series of finite sets of actions. A sequence of sets
of actions S is noted 〈Qi〉n, with n ∈ û and i ∈ [1, n]. If n
= 0, S is the empty sequence: S = 〈Qi〉0 = 〈〉; if n > 0, S can
be noted 〈Q1, Q2, ..., Qn〉. If the sets of actions are
singletons (i.e. Q1 = {a1}, Q2 = {a2}, ..., Qn = {an}), the
associated sequence of sets of actions is called sequence
of actions and will be (incorrectly) noted 〈a1, a2, ..., an〉.
The set of finite sequences of finite sets of actions formed

from the set of actions A is denoted by (2A)*. The set of
sequences of actions formed using the set of actions A is
denoted by A*.

Definition 6: We define the following functions:

• first: (2A)* − {〈〉} → 2A is defined by: first(〈Q1, Q2, ...,
Qn〉) = Q1.

• rest: (2A)* − {〈〉} → (2A)* is defined by: rest(〈Q1, Q2,
..., Qn〉) = 〈Q2, ..., Qn〉.

Definition 7: Let S, S’ ∈ (2A)* be two sequences of sets
of actions with S = 〈Qi〉n and S’ = 〈Q’i〉m. The
concatenation (noted ⊕) of S and S’ is defined by:

S ⊕ S’ = 〈Ri〉n+m with Ri = (if i ≤ n then Qi else Q’i).

⊕ is an internal composition law in (2A)*.

Definition 8: A linearization of a set of actions Q ∈ 2A

with Q = {a1, ..., an} is a permutation of Q, i.e. a sequence
of actions S such as there is a bijection b: [1, n] → Q
where S = 〈b(1), ..., b(n)〉. The linearization of the empty
set {} is the empty sequence 〈〉. The set of all the
linearizations of Q is denoted by Lin(Q).

Notations: If Q is the set of actions Q = {a1, ..., an}, then:

• the union of the preconditions of the elements of Q is
noted Prec(Q): Prec(Q) = Prec(a1) ∪ ... ∪ Prec(an),

• the union of the adds of the elements of Q is noted
Add(Q): Add(Q) = Add (a1) ∪ ... ∪ Add(an),

• the union of the deletes of the elements of Q is noted
Del(Q): Del(Q) = Del(a1) ∪ ... ∪ Del(an).

This is also available if Q is the sequence of actions Q =
〈a1, ..., an〉.
If Q = ∅ or Q = 〈〉, Prec(Q) = Add(Q) = Del(Q) = ∅.

In a plan of Graphplan, a set of actions represents
actions that can be executed in any order, and even in
parallel, without changing the resulting state. In this
paper, we will systematically use the expression set of
simultaneous actions − and not set of parallel actions − to
stress the fact that actions belong to the same set (that
represents a same level of the planning-graph) without
fixing in advance their future order of execution. The
expression set of parallel actions will be reserved for a set
of actions that can be executed in parallel.

As the majority of partial order planners (UCPOP,
SNLP...), Graphplan strongly constrains the choice of
actions so as to obtain the same resulting state with a
parallel or sequential execution of a plan.

To achieve this result using a Strips description of
actions, every action in a set must be independent with the
others, i.e. their effects must not be contradictory (not any
action must delete an add effect of another one) and they
must not interact (not any action must delete a
precondition of another one).
Definition 9: Two actions a1 ≠ a2 ∈ A are independent iff

(Add(a1) ∪ Prec(a1)) ∩ Del(a2) = ∅
and (Add(a2) ∪ Prec(a2)) ∩ Del(a1) = ∅.

An independent set represents a set of parallel actions: the
actions of this set are independent pairwise.

Definition 10: A set of actions Q ∈ 2A is an independent
set iff the actions of this set are independent pairwise, i.e.:

∀ a1 ≠ a2 ∈ Q, (Prec(a1) ∪ Add(a1)) ∩ Del(a2) = ∅.

Let us notice that for two actions to be executable in
parallel, another condition must be true: they must not
have incompatible preconditions. Graphplan and LCGP
detect and take advantage of these incompatibilities.

A sequence 〈Q1, ..., Qn〉 of sets of simultaneous actions
partially defines the order of execution of the actions. The
end of the execution of each action in Qi must precede the
beginning of the execution of each action in Qi+1. This
implicates that the execution of all the actions in Qi

precedes the execution of all the actions in Qi+1.
Let us formalize a plan of Graphplan, by defining an

application to simulate the execution of a sequence of sets
of actions from an initial representation of the world. If a
sequence of sets of actions cannot be applied to a state,
the result will be ⊥, the impossible state.

Definition 11: Let ℜ: (2P ∪ {⊥}) × (2A)* → (2P ∪ {⊥}),
defined as:
E ℜ S =
If S = 〈〉 or E = ⊥
then E
else If first(S) is independent and Prec(first(S)) ⊆ E
 then [(E − Del(first(S))) ∪ Add(first(S))] ℜ rest(S)
 else ⊥.
Definition 12: A sequence of sets of actions S ∈ (2A)* is a
plan for a state E ∈ (2P ∪ {⊥}), in relation to ℜ, iff E ℜ S
≠ ⊥.

When E ℜ S ≠ ⊥, we can associate a semantics to S which
is connected with the execution of actions in the real
world, because we are sure (in a static world) that our
prediction of the final state is correct.

Notation: when there is no ambiguity, ((...((E ℜ S1) ℜ S2)
ℜ ...)ℜ Sn) will be noted E ℜ S1 ℜ S2 ℜ ... ℜ Sn.

The successive application of ℜ to two sequences of sets
of actions and to a state gives the same result than the
application of the concatenation of these two sequences to
the same state.

Property 1: Let E ∈ (2P ∪ {⊥}) be a state and S1, S2 ∈
(2A)* two sequences of sets of actions. Then:

E ℜ (S1 ⊕ S2) = E ℜ S1 ℜ S2.

The Theorem 1 establishes the essential property of
Graphplan: the actions of a plan of Graphplan that can be
executed in parallel give the same result when they are
executed sequentially, whatever the order of execution is.

Theorem 1: Let E ∈ (2P ∪ {⊥}) be a state and S ∈ (2A)*
− {〈〉} a sequence of sets of actions, with S = 〈Q1, ..., Qn〉.
Then:

E ℜ S ≠ ⊥ ⇒ ∀ S1 ∈ Lin(Q1), ..., ∀ Sn ∈ Lin(Qn),
E ℜ S = E ℜ (S1 ⊕ ... ⊕ Sn).

The proof of this theorem is based on the folloowing three
lemmas.

Lemma 1: Let A, A1, ..., An, B1, ..., Bn be sets such as ∀ i
∈ [1, n−1], Ai+1 ∩ (B1 ∪ ... ∪ Bi) = ∅. Then:

(A − (A1 ∪ ... ∪ An)) ∪ (B1 ∪ ... ∪ Bn)
= ((...((A − A1) ∪ B1) − ...) − An) ∪ Bn.

The following lemma will be used to calculate the
application of a sequence of actions to a state (different
from ⊥) when it contains all the preconditions of every
action of the sequence and when an action never deletes
the preconditions of another one which succeeds to it
(immediately or not). In this particular case, the result is
always different from ⊥.

Lemma 2: Let E ∈ 2P be a state and S ∈ A* a sequence of
actions, with S = 〈ai〉n, such as: Prec(S) ⊆ E and ∀ i ∈ [1,
n−1], Prec(ai+1) ∩ (Del(a1) ∪ ... ∪ Del(ai)) = ∅. Then:

E ℜ S = ((...((((E − Del(a1)) ∪ Add(a1)) − Del(a2)) ∪
Add(a2)) − ...) − Del(an)) ∪ Add(an).

Lemma 3: Let E ∈ (2P ∪ {⊥}) be a state and Q ∈ 2A a set
of actions. Then:

E ℜ 〈Q〉 ≠ ⊥ ⇒ ∀ S ∈ Lin(Q), E ℜ 〈Q〉 = E ℜ S.

Now, we are going to question this property. We can
remark that E ℜ 〈{a1, ..., an}〉 = E ℜ 〈a1, ..., an〉 when ∀ i
∈ [1, n−1], Del(ai+1) ∩ (Add(a1) ∪ ... ∪ Add(ai)) = ∅ and
∀ i ∈ [1, n−1], Prec(ai+1) ∩ (Del(a1) ∪ ... ∪ Del(ai)) = ∅.
In this case, we can see that E ℜ 〈a1, ..., an〉 can be
computed without knowing the order of the actions of the
sequence 〈a1, ..., an〉.

4 Towards a new structure for plans
Graphplan imposes very strong conditions on the plans
using the independence property to choose the actions in
the sets of simultaneous actions. So, if necessary, it is
always possible to execute these actions in parallel. Now,
we are going to demonstrate that we can modify this
property to relax a part of the constraints on simultaneous
actions and nevertheless produce plans.

When we do this modification, we can no more be sure
that the actions in a set of actions (actions at a same level)
can be executed in parallel because they are possibly not
independent. The main idea of Graphplan is preserved
because these new sets of actions are used "in one piece":
we always try to establish all the preconditions of all the
actions in a set using the effects of the actions that belong
to another set of actions (at the precedent level).

When we relax a part of the constraints on independent
actions, we define a more flexible relation (no more
symmetrical) between the actions: the authorization
relation. An action a1 authorizes an action a2 if a2 can be
executed at the same time or after a1. To achieve this
result it is sufficient to preserve two conditions among
conditions for independent actions: a1 must not delete a
precondition of a2 (a2 must be executable) and a2 must not
delete a fact added by a1. This definition implies an order
for the execution of two actions: a1 authorizes a2 means
that if a1 is executed before a2, the add effects of a1 will
be preserved executing a2 and the preconditions of a2 will
be preserved executing a1. On the other hand if a1 does
not authorize a2 and if we execute a1 before a2, either a2

deletes an add effect of a1 (so the resulting state cannot be
computed by applying simultaneously a1 and a2), or a

precondition of a2 is deleted by a1 (so we cannot execute
a2).

Definition 13: An action a1 ∈ A authorizes an action a2 ∈
A (noted a1 ∠ a2) iff (1) a1 ≠ a2 and (2) Add(a1) ∩ Del(a2)
= ∅ and Prec(a2) ∩ Del(a1) = ∅. An action a1 forbids an
action a2 iff the action a1 does not authorize a2, i.e. if
not(a1 ∠ a2). Generally, the authorization is not an order
relation.

This authorization relation leads us to a new definition of
the sets that can belong to a plan. These sets will not be
independent sets. We want for every set of actions to find
at least one linearization of it that could be a plan. Such a
linearization introduces a notion of order among actions.

Definition 14: A sequence of actions 〈ai〉n ∈ 2A is
authorized iff ∀ i, j ∈ [1, n], i < j ⇒ ai ∠ aj, i.e.:

∀ i ∈ [1, n−1], Del(ai+1) ∩ (Add(a1) ∪ ... ∪ Add(ai)) = ∅
and Prec(ai+1) ∩ (Del(a1) ∪ ... ∪ Del(ai)) = ∅.

Definition 15: A set of actions Q ∈ (2A)* is authorized (if
not it is forbidden) iff one can find an authorized
linearization S ∈ Lin(Q). We will note LinA(Q) the set of
all the authorized linearizations of Q:

LinA(Q) = {S ∈ Lin(Q) | S is an authorized linearization}.

So, a set of actions is authorized if one can find an order
among the actions of the set such as no action in the set
deletes either an add effect of a preceding action or a
precondition of a following action.

Let us define ℜ*, a new application of a sequence of
sets of actions to a state that uses the authorization
relation between actions. Our planner LCGP will be based
on ℜ*. With this definition, we can demonstrate a new
theorem to compute the resulting state (Theorem 2). This
theorem does not use all the linearizations of the
independent sets of actions but only the linearizations that
respect the authorization constraints among actions of the
sets (authorized linearizations).

Definition 16: Let ℜ*: (2P ∪ {⊥}) × (2A)* → (2P ∪ {⊥}),
defined as:
E ℜ* S =
 If S = 〈〉 or E = ⊥
 then E
 else If first(S) is authorized and Prec(first(S)) ⊆ E
 then [(E − Del(first(S))) ∪ Add(first(S))] ℜ* rest(S)
 else ⊥.

Definition 17: A sequence of sets of actions S ∈ (2A)* is a
plan for a state E ∈ (2P ∪ {⊥}), in relation to ℜ*, iff E
ℜ* S ≠ ⊥.

When E ℜ* S ≠ ⊥, we can associate a semantics to S
(different from the semantics related to plans that are
recognized using ℜ). This semantics is connected with the
execution of actions in the real world because we are sure
(in a static world) that our prediction of the final state is
correct.

The Property 1, Lemma 1 and Lemma 2 remain true
replacing ℜ by ℜ*. The Theorem 2 we achieve is close to
Theorem 1 (its proof is alike): the application of every

authorized linearization of sets of actions of a plan of ℜ*
always gives the same result.

Theorem 2: Let E ∈ (2P ∪ {⊥}) be a state and S ∈ (2A)*
− {〈〉} a sequence of sets of actions, with S = 〈Q1, ..., Qn〉.
Then:

E ℜ* S ≠ ⊥ ⇒ ∀ S1 ∈ LinA(Q1), ..., ∀ Sn ∈ LinA(Qn),
E ℜ* S = E ℜ* (S1 ⊕ ... ⊕ Sn).

5 Relations between the formalisms
The independence and authorization relations are strongly
related, so the two formalisms are connected and a plan
for ℜ is a plan for ℜ*:

Theorem 3: Let E ∈ (2P ∪ {⊥}) be a state and S ∈ (2A)* a
sequence of sets of actions. Then:

E ℜ S ≠ ⊥ ⇒ E ℜ* S = E ℜ S.

We can also demonstrate that if a sequence of sets of
actions S is not a plan for a situation E in relation to ℜ*, it
is neither a plan for E in relation to ℜ:

E ℜ* S = ⊥ ⇒ E ℜ S = ⊥.

There is another connection between the plans recognized
by ℜ and the plans recognized by ℜ*: all the plans
constructed using the authorized linearizations of the sets
of actions of a plan recognized by ℜ*, are recognized by
ℜ. Moreover, the application of ℜ* on the original plan
produces the same resulting state than the application of
ℜ on every plan constructed using the authorized
linearizations of the sets of actions of the plan.

Theorem 4: Let E ∈ (2P ∪ {⊥}) be a state and S ∈ (2A)*
− {〈〉} a sequence of sets of actions, with S = 〈Q1, ... Qn〉.
Then:

E ℜ* S ≠ ⊥ ⇒ ∀ S1 ∈ LinA(Q1), ..., ∀ Sn ∈ LinA(Qn),
E ℜ* S = E ℜ (S1 ⊕ ... ⊕ Sn).

This theorem is essential and gives meaning to the plans
recognized by ℜ*: an elementary transformation (the
search of an authorized linearization of every set of
actions) produces a plan recognized by ℜ (and that
Graphplan would have produced).

6 Integration of this new structure of plans in
Graphplan
Now, we are going to explain the modifications we have
done on Graphplan to implement this new formalism in
LCGP. To sum up, one can remember that a
planning-graph is a graph constituted by successive levels,
each one is marked with a positive integer and is
constituted by a set of actions and a set of propositions.
The level 0 is an exception and only contains propositions
representing facts of the initial state.

6.1 Extending the planning-graph
During this stage, the only difference between Graphplan
and LCGP is about the computation of the exclusion
relation between actions. In Graphplan, two actions a1 and
a2 are mutually exclusive iff (1) they are different and (2)

they are not independent (i.e. one of them forbids the
other: not(a1 ∠ a2) or not(a2 ∠ a1)), or if a precondition of
one is mutually exclusive with a precondition of the other.
In LCGP, the exclusion relation between actions is thus
defined:

Definition 18: Two actions a1, a2 ∈ A are mutually
exclusive iff (1) a1 ≠ a2 and (2) each of them forbids the
other: not(a1 ∠ a2) and not(a2 ∠ a1), or if a precondition
of one is in mutual exclusion with a precondition of the
other.

This new definition of the mutual exclusion (or in
Graphplan, and in LCGP), implies that LCGP finds fewer
mutually exclusive pairs of actions than Graphplan (the
same number in the worst cases). Consequently, a level n
of LCGP will include more actions and propositions than
a level n of Graphplan (cf. example of § 6.4) because
actions can sometimes be applied earlier in LCGP (given
a level n, the graph of Graphplan is a subgraph of the one
of LCGP). The graph of LCGP grows faster and contains,
for a same number of levels, more potential plans than the
graph of Graphplan (the same number in the worst cases).
The extension of the graph finishes earlier too because the
goals generally appear before being produced by
Graphplan (at the same level in the worst cases).

6.2 Searching for a plan
After the construction stage, Graphplan tries to extract a
solution from the planning-graph, using a level-by-level
approach. It begins with the set of propositions
constructed at the last level (that includes the goals) and
inspects the different sets of actions that assert the goals.
It chooses one of them (backtrack point) and searches
again, at the previous level, for the sets of actions that
assert the preconditions of these actions... At each level,
the actions of the chosen set must be independent two by
two and their preconditions must not be mutually
exclusive to be in agreement with the associated
semantics (parallel actions, cf. § 3). So, Graphplan tests,
using the exclusion relations, that there is no pair of
mutually exclusive actions.

In LCGP, mutual exclusions are not sufficient to
preserve a set of actions for a plan. This set must also be
authorized (cf. Definition 15), i.e. one must find a
sequence of actions (authorized sequence) such as not any
action deletes a precondition of a following action or an
add effect of a previous action of the sequence. This
condition (to check wether a set of actions is authorized)
can be verified using a modified topological sort
algorithm (polynomial) to test that the graph of the
Definition 19 (for the considered set of actions), is a
directed acyclic graph (DAG):

Definition 19: Let Q ∈ 2A be a set of actions, with Q =
{a1, ..., an}. The authorization graph AG(N, C) of Q is an
oriented graph defined by:

• N is the set of the nodes such that for each action ai

there is only one associated node of N noted n(ai): N =
{n(a1), ..., n(an)},

• C is the set of arcs that represent the order constraints
among actions: there is an arc from n(ai) to n(aj) iff the
execution of ai must precede the execution of aj, i.e.
if aj forbids ai:

∀ ai ≠ aj ∈ Q, (n(ai), n(aj)) ∈ C ⇔ not(aj ∠ ai).

Indeed, we can demonstrate that:

Theorem 5: Let Q ∈ 2A be a set of actions and AG(N, C)
the authorization graph of Q. Then:

AG has no cycle ⇔ Q is authorized.

6.3 Return of the plan
The plan that LCGP returns is not recognized by ℜ
(which recognizes plans of Graphplan) but by ℜ*. A plan
of LCGP can be transformed into a plan recognized by
Graphplan, by using a modified version of the polynomial
algorithm of (Régnier and Fade 1991), revised and
formalized by (Bäckström 1998, p.119) who demonstrates
that it finds the optimal reordering in number of levels of
the plan (i.e. in number of sets of independent actions).
As for the search of an authorized sequence of a set of
actions, this stage will be decomposed in two parts. At
first, we build a graph that represents the constraints of
the plan (i.e. order relations and independence relations
among actions), and then we use a modified topological
sort algorithm on this graph to find the sequence of sets of
actions corresponding to the plan-solution.

Definition 20: Let E ∈ 2P be a state and S ∈ (2A)* a
sequence of sets of actions, with S = 〈Q1, ..., Qn〉, such as
E ℜ* S ≠ ⊥. The partial order graph POG(N, C) of S is an
oriented graph defined by:

• N is the set of the nodes such that for each action a ∈
Qi , ∀ i ∈ [1, n], there is only one associated node of
N noted n(a),

• C is the set of arcs that represent the constraints
among actions: there is an arc from n(ai) to n(aj) iff the
execution of ai must precede the execution of aj, i.e.:

(n(ai), n(aj)) ∈ C ⇔
 (ai ≠ aj ∈ Qk with k ∈ [1, n] and not(aj ∠ ai))
 or
 (ai ∈ Qk and aj ∈ Qp and 1 ≤ k < p ≤ n and
 (not(aj ∠ ai) or not(ai ∠ aj) or Add(ai) ∩ Prec(aj)≠∅))

The only difference with the PRF algorithm in
(Bäckström, 1998) is that we must take into account the
fact that actions in a same set can be not independent (in
that case, they are authorized because E ℜ* S ≠ ⊥). So,
we must order these actions in the same way we do to
check wether a set of actions is authorized (cf. § 6.2).

6.4 Example
The following example illustrates the difference between
Graphplan and LCGP. The set of propositions is P = {a,
b, c, d} and the set of actions is {A, B, C}, with:

Prec(A) = {a} Prec(B) = {a} Prec(C) = {b, c}
Add(A) = {b} Add(B) = {c} Add(C) = {d}
Del(A) = {} Del(B) = {a} Del(C) = {}

The initial state of the problem is I = {a}, and the goal is
G = {d}. Figure 1, the planning-graph of Graphplan.

Figure 1: The planning-graph of Graphplan

The actions A and B are mutually exclusive, because B
deletes a (precondition of A). At the level 1, the pairs of
mutually exclusive propositions are {a, c} and {b, c}. So,
the action C cannot be used at the level 2 to produce the
goal. At this level, b and c does not remain mutually
exclusive, because the no− op of b and the action B are
independent. The action C can be applied at the level 3.
The produced plan is 〈A, B, C〉. Figure 2, the
planning-graph of LCGP.

Figure 2: The planning-graph of LCGP

The main difference is that A and B are not mutually
exclusive, because A authorizes B (A ∠ B). Thus, at the
level 1, the propositions b and c are not mutually
exclusive, and the action C can be applied at the level 2.
The produced plan is 〈{A, B}, {C}〉, that is not recognized
by Res: {A, B} is not an independent but an authorized set
of actions. Using the § 6.3 algorithm, we obtain the same
plan than Graphplan: 〈A, B, C〉.

7 Empirical evaluation
Here are the results of the tests we performed with our
own implementation of Graphplan (we will call it GP).
GP and LCGP share most of their code: differences
between the two planners are minimal (cf. § 6). The
common part includes well-known improvements of
Graphplan: EBL/DDB techniques from (Kambhampati
1999a) and a graph construction inspired by (Long and
Fox 1999). GP and LCGP are implemented in Allegro
Common Lisp 5.0, and all the tests have been performed
with a Pentium-II 450Mhz machine with 256Mb of RAM,
running Debian GNU/Linux 2.0.

7.1 Comparison between Graphplan-based
planners
We compared four planners based on Graphplan in the
Logistics domain: IPP v4.0, STAN v3.0, GP and LCGP.

IPP and STAN are highly optimized planners
implemented in C for IPP, and in C++ for STAN. We
used the 30 problems given in the BLACKBOX
distribution (Kautz and Selman 1999).

One of the particularities of the Logistics domain is that
plans can contain a lot of parallel actions: Graphplan finds
many independent actions, so there is fewer constraints
(in relation to the number of actions) than in other
domains, like blocks-world domain with one arm.
However, numerous constraints found by Graphplan can
be relaxed by LCGP to become authorization constraints.
For example, in Graphplan, the two actions "load a
package in an airplane at place A" and "fly this airplane
from place A to place B" are not independent: one
precondition of the first action (the airplane must be at
place A) is deleted by the second action. In LCGP, the
first action authorizes the second so they can appear
simultaneously in an authorized set. The results of these
tests are shown in Table 1.

Among the three planners based on Graphplan (which
use the independence relation), STAN is the most
efficient. Two reasons can explain this result: STAN has
the EBL/DDB capacities described in (Kambhampati
1999b), and it preserves only the actions that are relevant
for each problem thanks to its pre-planning type analysis
tools (Fox and Long 1998). Then comes GP, which solves
fewer problems than STAN but significantly more than
IPP. GP is faster than IPP except on 2 problems. This can
be explained by the EBL/DDB capabilities of GP.

Our planner, LCGP, solves all the problems with
extremely good performances compared to the other
planners. STAN is however faster than LCGP in 9
problems, but there is no doubt about the possible
efficiency of LCGP if it had the same features as STAN
(C++ implementation and pre-planning analysis tools). In
most of the problems, the planning-graph construction
takes almost all the time: the search time is then
negligible. Only a few problems (log.c, log017, log020,
log023) take relatively more time due to the hardness of
search in the second stage. The improvement is evident:
LCGP runs on the average 1800 times faster than GP on
the problems solved by both planners. This result can be
explained by the reduction of the search space (cf. § 6, the
number of levels needed to solve the problems).

None of these planners produces systematically optimal
solutions (in number of actions), but their plans contain
approximately the same number of actions. LCGP is not
optimal in number of levels (in the sense of Graphplan,
with the independence relation: LCGP is optimal in
number of levels with the authorization relation), but the
size of the plan does not seem to be degraded: even more,
LCGP sometimes gives the best solution (cf. log010,
log013, log025...).

7.2 An efficient heuristic for variable and domain
orderings
The planning-graph of Graphplan and the dynamic
constraint satisfaction problem are closely connected as
demonstrated in (Kambhampati 1999b). A proposition p

 Level 0 Level 1 Level 2 Level 3

 Level 0 Level 1 Level 2

a

b

B

A

c
B

A
a

b

C

c

dA

B

a

BB

A

a

b

c

a a
B

A

b

d

c

C
a

B

A
b

c

at a level n in the planning-graph corresponds to a single
variable pn in the dynamic CSP framework; and the set of
actions D that establish this proposition at this level n in
the planning-graph corresponds to the domain Dpn of the
variable pn in the dynamic CSP framework.

Two orderings have a great influence on Graphplan’s
search. On one hand, is the ordering on variables during
search, also known as dynamic variable ordering (DVO).
(Kambhampati 1999b) reports limited improvements in
performance, using the following heuristic: choose first
the goal with the least establishers. This heuristic has a
limited effect too when allying DVO and forward
checking (we select then the goal that has the least
remaining establishers, after pruning values from domains
by forward checking). On the other hand, is the ordering
on the values of the domains. This ordering can also be
considered dynamically during search (see sticky values
and folding the domain in (Kambhampati 1999b)).

We describe here a simple domain-independent
heuristic for DVO and for static domain ordering
(domains are ordered before the search stage), that gives
good results with LCGP. This heuristic is very efficient
(see Table 2) in several domains (Ferry, Gripper,
Blocks-world, Logistics...), but leads to bad results in the
Tower of Hanoi domain.

The idea is the following: for DVO, we select first the
proposition whose starting level1 is the highest; for
domain ordering, we select first the action whose starting
level is the lowest. Indeed, to minimize the search space
when attempting to satisfy a set of propositions, we must
consider first the most constrained propositions: the ones
that appear in a high level are the most likely to have still
mutexes between their establishers (because mutual
exclusions between propositions and actions tend to

1By starting level of a proposition (or action), we mean the
number of the first level in which this proposition (or action)
appears.

 CPU time (sec.)
Ratio

Actions
Levels

 TimeGP/
GP

LCGP
Problems IPP STAN GP LCGP TimeLCGP IPP STAN GP LCGP (+) (++)

log.easy 0.06 0.05 0,41 0,32 1.29 25 25 25 25 9 9 6
rocket.a 23.09 16,29 0,49 33.05 30 30 28 7 7 4
rocket.b 34.40 24.34 5,85 0,40 14.62 26 26 26 26 7 7 4
log.a 2,174.07 4.34 164,01 1,23 133.56 54 54 54 54 11 11 7
log.b 5,820.92 5.67 76 402,09 1,78 43,043.43 45 44 45 45 13 13 8
log.c 6,135.85 ≥86,400 227,69 ≥379 52 53 ≥11 13 8
log.d 22,105.24 3,89 68 73 15 9
log.d3 ≥86,400 ≥86,400 4,46 ≥19,355 72 ≥13 13 8
log.d1 ≥86,400 23,88 ≥3,619 68 ≥14 17 10
log010 1,861.77 0.59 28,53 3,28 8.70 43 43 42 41 10 11 7
log011 218.03 8 635,85 2,18 3,965.04 48 48 49 11 11 7
log012 74.40 0.77 6,61 1,17 5.64 38 38 38 38 8 8 5
log013 523.24 4 526,88 3,70 1,222.82 67 67 66 11 11 7
log014 122.65 1.17 6,04 5,00 1.21 70 71 70 75 10 11 7
log015 ≥86,400 ≥86,400 4,26 ≥20,267 61 ≥11 13 7
log016 4,13 40 16 9
log017 ≥86,400 101,07 ≥855 44 ≥16 17 10
log018 3.04 40,74 5,58 7.31 48 52 50 11 11 7
log019 5.77 14,46 2,60 5.56 47 46 50 11 12 7
log020 ≥86,400 578,01 ≥149 87 ≥14 15 9
log021 3,259.27 2 594,30 4,20 617.25 63 63 66 11 12 7
log022 ≥86,400 4,18 ≥20,690 74 ≥14 15 9
log023 232.42 ≥86,400 90,50 ≥955 61 61 ≥13 13 8
log024 286.80 3 349,58 3,96 846.71 64 64 67 12 13 8
log025 1.46 12,62 3,38 3.74 57 58 56 12 13 8
log026 0.64 4,85 3,10 1.56 51 50 50 12 12 8
log027 23.15 ≥86,400 3,41 ≥25,345 71 72 ≥13 14 8
log028 ≥86,400 11,61 ≥7,445 78 ≥14 14 9
log029 3,558.05 1.19 8,27 5,96 1.39 46 49 46 46 10 11 7
log030 1.11 49,54 3,06 16.21 52 52 52 13 13 8
Mean (*) 1,518.82 1,563.53 5,325.94 2.85 1,866.28 41.89 52.33 48,67 49.11 10,50 10,89 6.78
Mean (**) - - ≥34,280.96 36.95 ≥927.82 - - - 55.57 ≥11.50 12,37 7.53
(+) number of levels of the plan after transformation by the algorithm of § 6.3
(++) number of levels of the plan before transformation by the algorithm of § 6.3
(*) mean of solved problems (white cells). For LCGP : mean of problems solved by Graphplan.
(**) mean of the 30 problems.

 grey cell: failure in the resolution of the corresponding problem.

Table 1: Comparison between Graphplan-based planners in the Logistics domain

disappear when the planning-graph grows). On the other
hand, we choose first the establishers that appear the
earliest in the planning-graph because their preconditions

are more likely to be no more mutually exclusive.
The usual strategy for static domain ordering consists in

privileging the choice of no-ops. Using another strategy

Problems
 CPU time (sec.)

Ratio
Expanded nodes (*) Actions Levels

TimeLCGP/
LCGP +DVO TimeLCGP+DVO LCGP +DVO LCGP DVO (+) (++)

ferry6 3,05 0,30 10,17 10 512 654 23 23 23 12
ferry8 387,51 2,51 154,39 995 339 4 958 31 31 31 16
gripper6 1,45 0,39 3,74 3 962 528 17 17 11 6
gripper8 165,81 8,02 20,68 409 019 9 489 23 23 15 8

3,42 2,49 1,37 171 87 12 12 12 12
257,65 19,13 13,47 22 359 6 866 18 18 18 18

log.c 227,69 1,81 125,80 443 054 272 53 62 13 8
log020 578,01 8,38 68,97 764 804 4 199 87 93 15 9
hanoi5 8,41 10,48 0,80 3 885 10 326 32 32 32 21

(+) number of levels of the plan after transformation by the algorithm of § 6.3
(++) number of levels of the plan before transformation by the algorithm of § 6.3

 1999b)) modified as stated in § 6.2. Find − Plan is called one time for each set of propositions to be established.

Table 2: Benefits of the DVO heuristic

bw-large-a
bw-large-b

(*) expanded nodes for LCGP corresponds to the number of calls of the function Find-Plan (see (Kambhampati

Total time (sec.) Search time (sec.) Expanded nodes Actions

Problems LCGP LCGP LCGP LCGP
log.easy 0,04 0,32 0.009 0.001 50 7 27 25
rocket.a 0,04 0,34 0.017 0.015 59 36 28 26
rocket.b 0,04 0,36 0.018 0.005 60 7 29 28
log.a 0,09 1,02 0.051 0.005 191 11 67 65
log.b 0,08 1,38 0.038 0.094 137 272 51 51
log.c 0,14 1,81 0.084 0.157 236 272 69 62
log.d 0,43 3,60 0.251 0.009 280 13 81 75
log.d3 0,58 3,81 0.354 0.007 317 9 82 78
log.d1 0,29 3,57 0.147 0.141 219 177 77 75
log010 0,38 3,28 0.194 0.004 179 8 46 43
log011 0,21 1,89 0.096 0.009 156 13 54 55
log012 0,17 1,14 0.072 0.003 142 6 41 40
log013 0,50 3,35 0.295 0.007 268 8 74 74
log014 0,57 4,38 0.310 0.006 263 8 82 71
log015 0,43 3,90 0.222 0.477 222 406 69 65
log016 0,13 6,17 0.040 4.483 103 10 965 44 45
log017 0,13 2,61 0.046 0.750 118 3 067 48 43
log018 0,87 5,52 0.431 0.004 227 8 56 50
log019 0,29 2,62 0.127 0.004 146 8 50 52
log020 0,63 8,38 0.378 3.861 340 4 199 99 93
log021 0,56 4,30 0.330 0.006 276 8 69 67
log022 0,47 3,85 0.290 0.072 323 101 87 86
log023 0,35 3,77 0.177 0.586 197 415 70 65
log024 0,41 3,17 0.228 0.006 232 9 73 68
log025 0,36 3,14 0.187 0.006 206 9 67 64
log026 0,30 3,08 0.124 0.008 154 15 52 53
log027 0,41 3,30 0.235 0.011 260 15 76 76
log028 1,03 8,13 0.673 0.103 399 121 88 83
log029 0,79 5,94 0.434 0.006 248 8 50 48
log030 0,34 3,07 0.160 0.005 180 9 52 52
Mean 0.37 3,37 0.201 0,36 206,27 673,67 61.93 59,27

HSP-R HSP-R HSP-R HSP-R

 Grey cells: problems in which LCGP makes more backtracks than HSP-R
 and in which LCGP’s search time is higher than HSP-R’s one.

Table 3: Comparison LCGP+DVO and HSP-R in the Logistics domain

can lead to a degradation in the quality of the solution in
number of actions of the plan (cf. Logistics domain, Table
2). However, for an efficiency purpose, we will employ
our heuristic in what follows.

7.3 Comparison with HSP-R
Thanks to our DVO heuristic, LCGP is more competitive
with HSP-R (Bonet and Geffner 1999), which actually
seems to be faster than Graphplan-based planners. We
compare LCGP and HSP-R on the Logistics domain, in
which HSP-R runs very fast (see Table 3).

If we compare the total running time, we see that
HSP-R is about 10 times faster than LCGP. But LCGP is
implemented in Common Lisp + CLOS, and HSP-R in C
which is certainly faster than Lisp. Furthermore, we have
not included the compilation time of the problems for
HSP-R, which took about 32 seconds (around 1 second
per problem).

Most of the running time of LCGP is spent building the
planning graph. Indeed, if we consider the only search
time, LCGP is faster than HSP-R in 23 of the 30
problems, which correlates exactly with the number of
expanded nodes. Furthermore, LCGP expands less than 15
nodes in 19 of the problems while HSP-R needs around
200 nodes on these problems.

If we now look at the quality of the solution, we see that
whereas LCGP finds more actions using the DVO
heuristic, it finds generally shorter plans than HSP-R.

7.4 Ferry and Gripper domains
Performances of LCGP in these domains are not as good
as in the Logistics domain, but are around 8 times better
than with GP (see Table 4 and Table 5). It is amazing to
see that in the Ferry domain, whose problems have linear
solutions, planning-graphs produced by LCGP are almost
2 times shorter than those of GP. Indeed, in LCGP, the
actions "embark a car on side A" and "sail from side A to
side B" can belong to the same authorized set, so as
"debark a car at place B" and "sail from place B to place
A".

7.5 Blocks-world domain
We used the Prodigy version of this domain, with 6
operators and one arm. As there is no parallelism at all to
exploit, even for LCGP, the planning-graphs built by GP
and LCGP are exactly the same; so the search stage is
performed in exactly the same way. We could however
expect LCGP to be slower than GP, because of the need
to recognize the authorized sets (cf. § 6.3). But as there is
no parallelism, a set of actions considered during search

Subgoals
 CPU time (sec.)

Ratio
Expanded nodes Actions

Levels
TimeGP/

GP
LCGP

GP LCGP TimeLCGP GP LCGP GP LCGP (+) (++)
1 0,02 0,01 1,54 4 3 3 3 3 3 2
2 0,03 0,02 1,32 11 5 7 7 7 7 4
3 0,05 0,04 1,50 91 13 11 11 11 11 6
4 0,15 0,06 2,55 506 51 15 15 15 15 8
5 0,52 0,12 4,46 2 007 198 19 19 19 19 10
6 1,86 0,30 6,18 6 500 654 23 23 23 23 12
7 6,23 0,90 6,95 18 478 1 888 27 27 27 27 14
8 18,95 2,51 7,55 48 111 4 958 31 31 31 31 16
9 55,17 7,69 7,18 117 884 12 199 35 35 35 35 18

10 152,63 21,05 7,25 276 770 28 695 39 39 39 39 20
11 421,15 55,54 7,58 630 371 65 415 43 43 43 43 22
12 1 117,30 147,05 7,60 1 404 787 145 869 47 47 47 47 24

(+) number of levels of the plan after transformation by the algorithm of § 6.3
(++) number of levels of the plan before transformation by the algorithm of § 6.3

Table 4: Comparison in the Ferry domain

Subgoals
 CPU time (sec.)

Ratio
Expanded nodes Actions

Levels
TimeGP/

GP
LCGP

GP LCGP TimeLCGP GP LCGP GP LCGP (+) (++)
2 0,03 0,03 1,08 4 3 5 5 3 3 2
4 0,14 0,06 2,25 299 20 11 11 7 7 4
6 3,05 0,39 7,86 6 750 528 17 17 11 11 6
8 65,09 8,02 8,12 97 633 9 489 23 23 15 15 8

10 905,94 112,82 8,03 928 124 86 076 29 29 19 19 10
12 ### 1 203,65 8,36 6 818 442 585 934 35 35 23 23 12

(+) number of levels of the plan after transformation by the algorithm of § 6.3
(++) number of levels of the plan before transformation by the algorithm of § 6.3

Table 5: Comparison in the Gripper domain

contains only one "real" action (all the others are no-ops).
It is not useful to perform the authorization test on a set of
actions containing less than three "real" actions, because:

• one no-op always authorizes another no-op;
• if an action does not authorize a no-op, then the no-op

does not authorize the action, so they are mutually
exclusive (and vice versa);

• two actions that do not authorize themselves are
mutually exclusive.

Thus the test of authorization of a set of actions is
performed on the set of the "real" actions of this set, if
they are at least three. This explains why LCGP and GP
perform exactly the same in this domain (for example
19.13 secs. in the problem bw-large-b).

8 Conclusion
None of the earlier improvements of Graphplan never
modified the structure of the planning-graph, with the
except of the modifications used to improve the
expressiveness of the description language (conditional
effects, quantification...) or to take into account
uncertainty. In Graphplan, the structure of the graph is
based on the concept of independence between actions,
that allows the generation of plans with parallel actions.

In this paper, we demonstrate that this condition can
advantageously be replaced by a less restrictive one: the
authorization between actions. The search space which is
then developed by LCGP becomes more compact (fewer
levels than Graphplan), which tremendously speeds up the
search time in some domains. The loss of optimality in
the sense of Graphplan (in number of levels) does not
appear to be significant, compared to the gain in
efficiency. Furthermore, the optimality in number of
actions is not related to the optimality in number of levels
(when parallelism is possible), so LCGP can give better
solutions (in number of actions) than Graphplan.

We also propose a domain-independent heuristic for
variable and domain orderings that greatly improves
LCGP, but can degrade the quality of the plan. On the
Logistics domain, LCGP becomes competitive with
HSP-R, a very efficient heuristic search planner.

References
Bäckström C. 1998. Computational aspects of reordering
plans. In Journal of Artificial Intelligence Research 9:99−
137.
Blum A. and Furst M. 1995. Fast planning through
planning-graphs analysis. In Proceedings of the
Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI 95), 1636− 1642.
Bonet B. and Geffner H. 1999. Planning as heuristic
search: new results. In Proceedings of the Fifth European
Conference on Planning (ECP’99).
Cayrol M.; Régnier P. and Vidal V. 2000. LCGP : une
amélioration de Graphplan par relâchement de contraintes
entre actions simultanées. To appear in Actes du

Douzième Congrès de Reconnaissance des Formes et
Intelligence Artificielle (RFIA’2000).
Fox M. and Long D. 1998. The automatic inference of
state invariants in TIM. In Journal of Artificial
Intelligence Research 9:367− 421.
Fox M. and Long D. 1999. The detection and exploitation
of symmetry in planning problems. In Proceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI’99), 956− 961.
Guéré E. and Alami R. 1999. A possibilistic planner that
deals with non-determinism and contingency. In
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI’99), 996−
1001.
Kambhampati S. 1999a. Improving Graphplan’s search
with EBL & DDB techniques. In Proceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI’99), 982− 987.
Kambhampati S. 1999b. Planning-graph as (dynamic)
CSP: Exploiting EBL, DDB and other CSP Techniques in
Graphplan. To appear in Journal of Artificial Intelligence
Research.
Kautz H. and Selman B. 1999. Unifying SAT-based and
Graph-based Planning. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence
(IJCAI’99), 318− 325.
Koehler J. 1998. Planning under resources constraints. In
Proceedings of the Thirteenth European Conference on
Artificial Intelligence (ECAI’98), 489− 493.
Koehler J.; Nebel B.; Hoffmann J. and Dimopoulos Y.
1997. Extending planning-graphs to an ADL subset. In
Proceedings of the Fourth European Conference on
Planning (ECP’97), 273− 285.
Long D. and Fox M. 1999. The efficient implementation
of the plan-graph in STAN. In Journal of Artificial
Intelligence Research 10:87− 115.
Nebel B.; Dimopoulos Y. and Koehler J. 1997. Ignoring
irrelevant facts and operators in plan generation. In
Proceedings of the Fourth European Conference on
Planning (ECP’97), 338− 350.
Régnier P. and Fade B. 1991. Complete determination of
parallel actions and temporal optimization in linear plans
of actions. In Proceedings of the European Workshop on
Planning (EWSP’91), 100− 111.
Vidal V. 2000. Contribution à la planification par
compilation de plans. Rapport IRIT 00/03− R, Université
Paul Sabatier, Toulouse, France.
Weld D.; Anderson C. and Smith D. 1998. Extending
Graphplan to handle uncertainty and sensing actions. In
Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI’98), 897− 904.
Zimmerman T. and Kambhampati S. 1999. Exploiting
symmetry in the planning-graph via explanation-guided
search. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI’99), 605−
611.

